Skip to main content
Log in

Coherent structures in wall turbulence and mechanism for drag reduction control

  • Article
  • The 4th Tsien Hsue Shen Memorial Lecture
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Herein is introduced the mechanism for active control influencing the generation of the near-wall streamwise vortices, which are closely related to the production of high skin friction in wall-bounded turbulent flows. A new opposition control scheme with adjusting control amplitude is proposed and evaluated in turbulent channel flow by direct numerical simulations. The maximum drag reduction rate can be greatly enhanced by the strengthened control. Finally the effectiveness of the control to the coherent structures at high Reynolds numbers is investigated by using a linear transient growth model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Z S. Turbulence (in Chinese). Beijing: National Defence Industry Press, 2002

    Google Scholar 

  2. Liepmann H. The rise and fall of ideas in turbulence. Am Scientists, 1979, 67: 221

    MathSciNet  ADS  Google Scholar 

  3. Gad-el-hak M. Flow Control. Passive, Active, and Reactive Flow Management. Cambridge: Cambridge University Press, 2000

    Book  MATH  Google Scholar 

  4. Kravchenko A G, Choi H, Moin P. On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers. Phys Fluids A, 1993, 5: 3307–3309

    Article  ADS  Google Scholar 

  5. Choi H, Moin P, Kim J. Active turbulence control for drag reduction in wall-bounded flows. J Fluid Mech, 1994, 262: 75–110

    Article  ADS  MATH  Google Scholar 

  6. Kim J. Physics and control of wall turbulence for drag reduction. Phil Trans R Soc A, 2011, 369: 1396–1411

    Article  ADS  MATH  Google Scholar 

  7. Schoppa W, Hussain F. Coherent structure generation in near-wall turbulence. J Fluid Mech, 2002, 453: 57–108

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Smith C R, Walker J D A. Turbulent wall-layer vortices. In: Fluid Vortices. Green S, ed. Boston: Kluwer Academic Publishers, 1995. 235–290

    Chapter  Google Scholar 

  9. Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech, 1999, 387: 353–396

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Brooke J W, Hanratty T J. Origin of turbulence-producing eddies in a channel flow. Phys Fluids A, 1993, 5: 1011–1022

    Article  ADS  MATH  Google Scholar 

  11. Hamilton J M, Kim J, Waleffe F. Regeneration mechanisms of near-wall turbulence structures. J Fluid Mech, 1995, 287: 317–348

    Article  ADS  MATH  Google Scholar 

  12. Deng B Q, Xu C X. Influence of active control on STG-based generation of streamwise vortices in near-wall turbulence. J Fluid Mech, 2012, 710: 234–259

    Article  MathSciNet  ADS  Google Scholar 

  13. Xu C X. Direct Numerical Simulation of Turbulent Channel Flow (in Chinese). Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 1995

    Google Scholar 

  14. Jimenez J, Moin P. The minimal flow unit in near-wall turbulence. J Fluid Mech, 1991, 225: 213–240

    Article  ADS  MATH  Google Scholar 

  15. Hammond E P, Bewle T R, Moin P. Observed mechanisms for turbulence attenuation and enhancement in opposition-controlled wall-bounded flows. Phys Fluids, 1998, 10: 2421–2423

    Article  ADS  Google Scholar 

  16. Jeong J, Hussain F. On the identification of a vortex. J Fluid Mech, 1995, 285: 69–94

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Chung Y M, Talha T. Effectiveness of active flow control for turbulent skin friction drag reduction. Phys Fluids, 2011, 23: 025102

    Article  ADS  Google Scholar 

  18. Marusic I, McKeon B J, Monkewitz P A, et al. Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys Fluids, 2010, 22: 065103

    Article  ADS  Google Scholar 

  19. Marusic I, Mathis R, Hutchins N. High Reynolds number effects in wall turbulence. Int J Heat Fluid Flow, 2010, 31(3): 418–428

    Article  Google Scholar 

  20. Chung Y, Collis S S, Ramakrishnan S. Viscous effects in control of near-wall turbulence. Phys Fluids, 2002, 14: 4069–4080

    Article  ADS  Google Scholar 

  21. del Alamo J C, Jimenez J. Linear energy amplification in turbulent channels. J Fluid Mech, 2006, 559: 205–213

    Article  ADS  MATH  Google Scholar 

  22. Deng B Q, Xu C X, Huang W X, et al. Effect of active control on optimal structures in wall turbulence. Sci China-Phys Mech Astron, 2013, 56(2): 290–297

    Article  ADS  Google Scholar 

  23. Schmid P J, Henningson D S. Stability and Transition in Shear Flows. New York: Springer, 2001

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunXiao Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Deng, B., Huang, W. et al. Coherent structures in wall turbulence and mechanism for drag reduction control. Sci. China Phys. Mech. Astron. 56, 1053–1061 (2013). https://doi.org/10.1007/s11433-013-5087-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5087-4

Keywords

Navigation