Skip to main content
Log in

Noether symmetries of the nonconservative and nonholonomic systems on time scales

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In this paper we give a new method to investigate Noether symmetries and conservation laws of nonconservative and nonholonomic mechanical systems on time scales \(\mathbb{T}\), which unifies the Noether’s theories of the two cases for the continuous and the discrete nonconservative and nonholonomic systems. Firstly, the exchanging relationships between the isochronous variation and the delta derivatives as well as the relationships between the isochronous variation and the total variation on time scales are obtained. Secondly, using the exchanging relationships, the Hamilton’s principle is presented for nonconservative systems with delta derivatives and then the Lagrange equations of the systems are obtained. Thirdly, based on the quasi-invariance of Hamiltonian action of the systems under the infinitesimal transformations with respect to the time and generalized coordinates, the Noether’s theorem and the conservation laws for nonconservative systems on time scales are given. Fourthly, the d’Alembert-Lagrange principle with delta derivatives is presented, and the Lagrange equations of nonholonomic systems with delta derivatives are obtained. In addition, the Noether’s theorems and the conservation laws for nonholonomic systems on time scales are also obtained. Lastly, we present a new version of Noether’s theorems for discrete systems. Several examples are given to illustrate the application of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hilscher S. Differential and difference calculus. Nonlinear Anal, 1997, 30: 2683–2694

    Article  MathSciNet  Google Scholar 

  2. Hilscher R, Zeidan V. Calculus of variations on time scales. J Math Anal Appl, 2004, 289: 143–166

    Article  MathSciNet  MATH  Google Scholar 

  3. Atici F M, Biles D C, Lebedinsky A. An application of time scales to economics. Math Comput Model, 2006, 43: 718–726

    Article  MathSciNet  MATH  Google Scholar 

  4. Bohner M. Calculus of variations on time scales. Dyn Syst Appl, 2004, 13: 339–349

    MathSciNet  MATH  Google Scholar 

  5. Almeida R, Torres D F M. Isoperimetric problems on time scales with nabla derivatives. J Vib Control, 2009, 15: 951–958

    Article  MathSciNet  Google Scholar 

  6. Malinowsk A B, Torres D F M. Necessary and sufficient conditions for local Pareto optimality on time scales. J Math Sci, 2009, 161: 803–810

    Article  MathSciNet  Google Scholar 

  7. Ahlbrandt C D, Bohner M, Ridenhour J. Hamiltonian systems on time scales. J Math Anal Appl, 2000, 250: 561–578

    Article  MathSciNet  MATH  Google Scholar 

  8. Ferreira R A C, Torres D F M. High-order Calculus of Variations on Time Scales. Berlin: Springer, 2008

    Google Scholar 

  9. Bartosiewicz Z, Pawluszewic E. Realizations of nonlinear control systems on time scales. IEEE T Automat Contr, 2008, 53: 571–575

    Article  Google Scholar 

  10. Bartosiewic Z, Kotta Ü, Pawluszewicz E. Equivalence of linear control systems on time scales. Proc Estonian Acad Sci Phys Math, 2006, 55: 43–52

    MathSciNet  Google Scholar 

  11. Hilscher R, Zeidan V. Weak maximum principle and accessory problem for control problems on time scales. Nonlinear Anal, 2009, 70: 3209–3226

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhan Z D, Wei W, Xu H L. Hamilton-Jacobi-Bellman equations on time scales. Math Comput Model, 2009, 49: 2019–2018

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Bohner M, Peterson A. Dynamic EQUATIONs on Time Scales-An Introduction with Applications. Boston: Birkhauser Boston Inc, 2001

    Book  MATH  Google Scholar 

  14. Agarwal R, Bohner M, O’Regan D, et al. Dynamic equations on time scales: A survey. J Comput Appl Math, 2002, 14: 1–26

    Article  MathSciNet  Google Scholar 

  15. Torres D F M. Torres D F M. Clarke F H. Optimization and Nonsmooth Analysis. New York: Wiley, 1983

    Google Scholar 

  16. Li Y C, Zhang Y, Liang J H, et al. Noether’s theorem of nonholonomic systems of non-Chetaev’s type with unilateral constraints. Chin Phys, 2001, 10: 376–379

    Article  ADS  Google Scholar 

  17. Vujanovic B D, Djukiv D S. Noether’s theorem in classical nonconservative mechanics. Acta Mech, 1974, 23: 17–27

    Google Scholar 

  18. Torres D F M. On the Noether theorem for optimal control. Eur J Control, 2002, 8: 56–63

    Article  Google Scholar 

  19. Fu J L, Chen B Y, Liu R W, et al. Velocity-dependent symmetries and non-Noether conserved quantities of electromechanical systems. Sci China-Phys Mech Astron, 2011, 54: 288–295

    Article  ADS  Google Scholar 

  20. Cadzow J A. Discrete calculus of variations. Int J Control, 1970, 11: 393–407

    Article  MATH  Google Scholar 

  21. Logan J D. First integrals in the discrete variational calculus. Aequationes Math, 1973, 9: 210–220

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen L Q, Zhang H B, Liu R W. First integrals of the discrete nonconservative and nonholonomic systems. Chin Phys, 2005, 14: 238–243

    Article  MathSciNet  ADS  Google Scholar 

  23. Fu J L, Chen L Q, Chen B Y. Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices. Sci China-Phys Mech Astron, 2010, 53: 543–554

    ADS  Google Scholar 

  24. Fu J L, Li X W, Li C R. Noether-type theory for discrete mechanicoelectrical dynamical systems with nonregular lattices. Sci China-Phys Mech Astron, 2010, 53: 1687–1698

    Article  ADS  Google Scholar 

  25. Fu J L, Chen L Q, Chen B Y. Noether symmetries of discrete nonholonomic dynamical systems. Phys Lett A, 2009, 37: 409–412

    Article  MathSciNet  ADS  Google Scholar 

  26. Bangerezako G. Variational q-calculus. J Math Anal Appl, 2004, 289: 650–665

    Article  MathSciNet  MATH  Google Scholar 

  27. Martins N, Torres D F M. The second Euler-Lagrange equation of variational calculus on time scales. Eur J Control, 2010, 30: 1–17

    ADS  Google Scholar 

  28. Torres D F M. Noether’s theorem on time scales. J Math Anal Appl, 2008, 34: 1220–1226

    Google Scholar 

  29. Martins N, Torres D F M. Calculus of variations on time scales with nabla deriatives. Nonlinear Anal, 2009, 71: 763–773

    Article  MathSciNet  Google Scholar 

  30. Zhang Y, Mei F X. Effects of non-conservative forces and nonholonomic constraints on Noether symmetries of a Lagrange system. Acta Phys Sin-Ch Ed, 2004, 53: 661–665

    MathSciNet  MATH  Google Scholar 

  31. Mei F X. Foundations of Mechanics of Nonholonomic Systems (in Chinese). Beijing: Beijing Institute of Technology Press, 1985. 334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JingLi Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, P., Fu, J. & Guo, Y. Noether symmetries of the nonconservative and nonholonomic systems on time scales. Sci. China Phys. Mech. Astron. 56, 1017–1028 (2013). https://doi.org/10.1007/s11433-013-5065-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5065-x

Keywords

Navigation