Skip to main content
Log in

First-principles study on electronic structures and optical properties of the single-walled (n, 0) ZnO nanotubes

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Using the first-principles calculations, we studied the geometric structures, electronic structures and optical properties of the single-walled (n, 0) ZnO nanotubes (NTs). The calculated results show that all the bind energies of the single-walled (n, 0) ZnO NTs are of negative values, which indicate that the ZnO NTs can exist stably as single-walled NTs. While the calculated results of electronic structure indicate that the single-walled (n, 0) ZnO NTs are a type of direct wide band-gap semiconductor materials, the whole valence bands are spread and drift to low-energy direction with the increase of the NT diameter. The defect energy levels caused by quantum size and surface effects emerge on the top of the valence bands. Furthermore, the calculated results of optical properties reveal that the dielectric peaks have a blue shift and the edge of absorption band corresponds to ultraviolet band with the decrease of the NT diameter. The single-walled (n, 0) ZnO NTs can be applied to ultraviolet semiconductor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nomura K, Ohta H, Ueda K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 2003, 300: 1269–1272

    Article  ADS  Google Scholar 

  2. Ma J J, Jin K X, Luo B C, et al. Rectifying and photovoltage proper ties of Zno:Al/p-Si heterojunction. Chin Phys Lett, 2010, 27: 107304

    Article  ADS  Google Scholar 

  3. Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312: 242–246

    Article  ADS  Google Scholar 

  4. Wang Z L. Zinc oxide nanostructures: Growth, properties and applications. J Phys-Condens Matter, 2004, 16: R829–R858

    Article  ADS  Google Scholar 

  5. Zhao S Q, Liu W W, Yang L M, et al. Lateral photovoltage of B-doped ZnO thin films induced by 10.6 μm CO2 laser. J Phys D-Appl Phys, 2009, 42: 185101

    Article  ADS  Google Scholar 

  6. Jung M N, Koo J E, Oh S J, et al. Influence of growth mode on the structural, optical, and electrical properties of In-doped ZnO nanorods. Appl Phys Lett, 2009, 94: 041906

    Article  ADS  Google Scholar 

  7. Lee S Y, Shim E S, Kang H S, et al. Fabrication of ZnO thin film diode using laser annealing. Thin Solid Films, 2005, 437: 31–34

    Article  ADS  Google Scholar 

  8. Könenkamp R, Word R C, Schlegel C. Vertical nanowire light-emitting diode. Appl Phys Lett, 2004, 85: 6004–6006

    Article  ADS  Google Scholar 

  9. Jo S H, Banerjee D, Ren Z F. Field emission of zinc oxide nanowires grown on carbon cloth. Appl Phys Lett, 2004, 85: 1407–1409

    Article  ADS  Google Scholar 

  10. Liu R B, Pan A L, Wang F F, et al. Optical processes in the formation of stimulated emission from ZnO nanowires. Chin Phys, 2007, 16: 1129–1134

    Article  ADS  Google Scholar 

  11. Li X, Zhai F F, Liu Y, et al. Synthesis and photoluminescence study on ZnO nano-particles. Chin Phys B, 2007, 16: 2769–2772

    Article  Google Scholar 

  12. Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281: 951–956

    Article  ADS  Google Scholar 

  13. Xu W Z, Ye Z Z, Ma D W, et al. Quasi-aligned ZnO nanotubes grown on Si substrates. Appl Phys Lett, 2005, 87: 093110

    Article  ADS  Google Scholar 

  14. Xing Y J, Xi Z H, Zhang X D, et al. Nanotubular structures of zinc oxide. Solid State Commun, 2004, 129: 671–675

    Article  ADS  Google Scholar 

  15. Xing Y J, Xi Z H, Xue Z Q, et al. Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl Phys Lett, 2003, 83: 1689–1692

    Article  ADS  Google Scholar 

  16. Wei A, Sun X W, Xu C X. Stable field emission from hydrothermally grown ZnO nanotubes. Appl Phys Lett, 2006, 88: 213102

    Article  ADS  Google Scholar 

  17. Tu Z C, Hu X. Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys Rev B, 2006, 74: 035434

    Article  ADS  Google Scholar 

  18. Xu C X, Zhu G P, Li X, et al. Growth and spectral analysis of ZnO nanotubes. J Appl Phys, 2008, 103: 094303

    Article  ADS  Google Scholar 

  19. Erkoc S, Kökten H. Structural and electronic properties of single-wall ZnO nanotubes. Physica E, 2005, 28: 162–170

    Article  ADS  Google Scholar 

  20. Wang B L, Nagase S, Zhao J J, et al. The stability and electronic structure of single-walled ZnO nanotubes by density functional theory. Nanotechnology, 2007, 18: 345706

    Article  Google Scholar 

  21. Li H, Jiang Z H, Jiang Q. Size-dependent structural stability of ZnO nanowires and single-walled nanotubes. Chem Phys Lett, 2008, 465: 78–81

    Article  ADS  Google Scholar 

  22. Shen X, Allen P B, Muckerman J T, et al. Wire versus tube: Stability of small one-dimensional zno nanostructures. Nano Lett, 2007, 7: 2267–2271

    Article  ADS  Google Scholar 

  23. White C T, Mintmire J W. Fundamental properties of single-wall carbon nanotubes. J Phys Chem B, 2005,109: 52–65

    Article  Google Scholar 

  24. Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP. Z Kristallogr, 2005, 220: 567–570

    Article  Google Scholar 

  25. Perdew J P, Wang Y. Accurate and simple analytic representation of the electron gas correlation energy. Phys Rev B, 1992, 45: 13244–13249

    Article  ADS  Google Scholar 

  26. Yang Y R, Yan X H, Xiao Y, et al. The optical properties of one-dimensional ZnO: A first-principles study. Chem Phys Lett, 2007, 446: 98–102

    Article  ADS  Google Scholar 

  27. Shelly L E, John W M. First-principles study of the optical properties of ZnO single-wall nanotubes. J Phys Chem C, 2007, 111: 17821–17826

    Article  Google Scholar 

  28. Lee S M, Lee Y H, Hwang Y G, et al. Stability and electronic structure of GaN nanotubes from density-functional calculations. Phys Rev B, 1999, 60: 7788–7791

    Article  ADS  Google Scholar 

  29. Xu H, Zhang R Q, Zhang X H, et al. Structural and electronic properties of ZnO nanotubes from density functional calculations. Nanotechnology, 2007, 18: 485713

    Article  Google Scholar 

  30. Zhou Z, Li Y F, Liu L, et al. Size-and surface-dependent stability, electronic properties, and potential as chemical sensors: computational studies on one-dimensional ZnO nanostructures. J Phys Chem C, 2008, 112: 13926–13931

    Article  Google Scholar 

  31. Negishi R, Hasegawa T, Terabe K, et al. Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques. Appl Phys Lett, 2006, 88: 223111

    Article  ADS  Google Scholar 

  32. Usuda M, Hamada N, Kotani T, et al. All-electron GW calculation based on the LAPW Application to wurtzite ZnO method: Application to wurtzite ZnO. Phys Rev B, 2002, 66: 125101

    Article  ADS  Google Scholar 

  33. Sapra S, Sarma A D D. Evolution of the electronic structure with size in II-VI semiconductor nanocrystals. Phys Rev B, 2004, 69: 125304

    Article  ADS  Google Scholar 

  34. Schröer P, Krüger P, Pollmann J. Self-consistent electronic-structure calculations of the (10\(\bar 1\)0) surfaces of the wurtzite compounds ZnO and CdS. Phys Rev B, 1994, 49: 17092–17101

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FuChun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, J., Zhang, F., Zhang, W. et al. First-principles study on electronic structures and optical properties of the single-walled (n, 0) ZnO nanotubes. Sci. China Phys. Mech. Astron. 56, 706–712 (2013). https://doi.org/10.1007/s11433-013-5038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5038-0

Keywords

Navigation