Advertisement

Investigation of the fluid flow in an isolated rotor-stator system with a peripheral opening

  • Roger DebuchyEmail author
  • Fadi Abdel Nour
  • Hassane Naji
  • Gérard Bois
Article

Abstract

This paper deals with an experimental, theoretical and numerical study of a turbulent flow with separated boundary layers between a rotor and a stator. The system is not subjected to any superimposed radial flow. The periphery of the cavity is opened to the atmosphere so that the solid body rotation for infinite discs is not always observed. Emphasis was placed on development of an asymptotic approach and a step-by-step method to compute the radial distribution of the core swirl ratio and the static pressure on the stator side. The theory also includes the radial and axial velocities in the core region. The numerical simulation has been conducted with the commercial CFD code Fluent 6.1. The k-ωSST turbulence model is used, with the assumption of 2D-axisymmetric and steady flow. CFD validations have been performed by comparison of the numerical results with the corresponding theoretical results. Numerical and experimental results are in good agreement with analytical solutions.

Keywords

rotor-stator cavity analytical solution numerical simulations k-ωSST turbulence model 
CqC

dimensionless coefficient of flow rate

Cqp

peripheral dimensionless coefficient of flow rate, = RoGRe 1/5

Cqr

dimensionless coefficient of flow rate, = Re 1/5 qr*−13/5/(2πΩR 3)

Ek

Ekman number, = 1/ ReG 2

G

gap ratio, =H/R

H

axial gap of the cavity

K

core swirl ratio, = ν θr at z* = 1/2

KB

core swirl ratio in case of solid body rotation

KP

pre-swirl ratio, =K at r*=1

p

static pressure on the stator

patm

atmospheric pressure

P*

dimensionless static pressure on the stator, \({{ = p - p_{atm} } \mathord{\left/ {\vphantom {{ = p - p_{atm} } {\left( {\frac{1} {2}\rho \Omega ^2 R^2 } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\frac{1} {2}\rho \Omega ^2 R^2 } \right)}} \)

q

volume flow rate

qC

volume flow rate in the core region

qR

volume flow rate in the rotor boundary layer

qS

volume flow rate in the stator boundary layer

r

radial coordinate

r*

dimensionless radial coordinate, =r/R

R

radius of the rotor

RH

outer radius of the hub

Re

Reynolds number, = ΩR 2

U0

order of magnitude of the radial velocity

νr

radial mean velocity

νθ

tangential mean velocity

νz

axial mean velocity

Vr*

dimensionless radial velocity, = ν r /U 0

Vθ*

dimensionless tangential velocity, ν θR

Vz*

dimensionless axial velocity, = ν z /GU 0

y*

dimensionless axial distance from the rotor, = z* − z 0*

z

axial distance from the wall of the rotor inside the cavity

z*

dimensionless axial distance from the rotor, =z/H

z0*

dimensionless axial distance from the rotor

ΔR

difference between the rotor and stator radii

ΔR

rotor boundary layer thickness

ΔS

stator boundary layer thickness

ΔR*

dimensionless rotor boundary layer thickness, = ΔR/νr

ΔS*

dimensionless stator boundary layer thickness, = ΔS/νr

Ω

angular speed of the rotor

ν

kinematic viscosity of fluid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batchelor G K. Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. J Mech Appl Math, 1951, 4: 29–41zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Stewartson K. On the flow between two rotating coaxial discs. Proc Camb Phil Soc, 1953, 49: 333–341ADSzbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Daily J W, Nece R E. Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. J Basic Eng, 1960, 82: 217–232CrossRefGoogle Scholar
  4. 4.
    Itoh M, Yamada Y, Imao S, et al. Experiments on turbulent flow due to an enclosed rotating disk. Exp Therm Fluid Sci, 1990, 5: 359–368CrossRefGoogle Scholar
  5. 5.
    Elena L, Schiestel R. Turbulence modeling of confined flow in rotating disk systems. AIAA J, 1995, 33: 812–821ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Debuchy R, Dyment A, Muhe H, et al. Radial inflow between a rotating and a stationary disc. Eur J Mech-B/Fluids, 1998, 17: 791–810zbMATHCrossRefGoogle Scholar
  7. 7.
    Poncet S, Chauve M P, Le Gal P. Lois analytiques pour les écoulem-ents en cavité rotor-stator. Mécanique Industries, 2008, 9: 227–236CrossRefGoogle Scholar
  8. 8.
    Picha K G, Eckert E R G. Study of the air flow between coaxial disks rotating with arbitrary velocities in an open or enclosed space. In: Proceedings of 3rd US National Congress on Applied Mechanics, 1958. 791–798Google Scholar
  9. 9.
    Poncet S. Écoulements de type rotor-stator soumis à un flux axial: de Batchelor à Stewartson. Sarrebruck: Editions Universitaires Europée-nnes, 2010Google Scholar
  10. 10.
    Djaoui M, Malesys A, Debuchy R. Mise en évidence expérimentale de la sensibilité de l’écoulement de type rotor-stator aux effets de bord. C R Acad Sci Paris, 1999, 327: 49–54zbMATHGoogle Scholar
  11. 11.
    Debuchy R, Abdel Nour F, Bois G. On the flow behavior in rotor-stator system with superposed flow. Int J Rotating Mach, 2008, 2008: 719510Google Scholar
  12. 12.
    Poncet S, Chauve M P, Le Gal P. Turbulent rotating disk flow with inward throughflow. J Fluid Mech, 2005, 522: 253–262ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Debuchy R, Abdel Nour F, Bois G. An analytical modeling of the central core flow in a rotor-stator system with several preswirl conditions. J Fluids Eng, 2010, 132: 061102CrossRefGoogle Scholar
  14. 14.
    Abdel Nour F, Poncet S, Debuchy R, et al. A combined analytical, experimental and numerical investigation of turbulent air flow behaviour in a rotor-stator cavity. Mécanique Industries, 2009, 10: 195–201CrossRefGoogle Scholar
  15. 15.
    Salvadori S, Marini A, Martelli F. Methodology for the residual axial thrust evaluation in multistage centrifugal pumps. Eng Appl Comput Fluid Mech, 2012, 6: 271–284Google Scholar
  16. 16.
    Owen J M, Rogers R H. Flow and Heat Transfer in Rotating-disc System, Vol. 1: Rotor-stator System. Ed W D Morris: John Wiley & Sons Inc, 1989Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Roger Debuchy
    • 1
    • 2
    Email author
  • Fadi Abdel Nour
    • 3
  • Hassane Naji
    • 1
    • 2
  • Gérard Bois
    • 4
  1. 1.Laboratoire Génie Civil & géo-Environnement (LGCgE-EA 4515)UArtois/FSA BéthuneBéthuneFrance
  2. 2.Université Lille Nord de FranceLilleFrance
  3. 3.Department of Water EngineeringDamascus UniversityDamascusSyria
  4. 4.LML-PRES Lille Nord de FranceArts et Métiers ParisTechLilleFrance

Personalised recommendations