Skip to main content
Log in

Pulse phase and doppler frequency estimation of X-ray pulsars under conditions of spacecraft and binary motion and its application in navigation

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The pulse phase and doppler frequency estimation of X-ray pulsars in dynamic situations and its application in navigation is a problem that has not been fully investigated. In this paper, solutions are proposed to solve this problem under conditions of spacecraft and binary motion. A high-precision doppler frequency (velocity) measurement model as well as a phase (range) measurement model is established. The averaged maximum-likelihood estimator is developed for the dynamic pulse phase estimation. The pulse phase tracking technique is used in the doppler frequency determination. The tracking filter is redesigned and compared with the existing algorithms. The comparison verifies the advantage of the filter algorithm presented in this paper. Unlike traditional views, it is found that in dynamic situations, shorter observation interval lengths will result in higher-accuracy phase and frequency estimates as the tracking filter outputs. A photon-level integrated numerical simulation is performed. Simulation results testify to the validity of the proposed phase and doppler frequency estimation scheme, and show that incorporation of velocity measurements as well as the range ones into the navigation estimator will improve the navigation steady-state performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanson J E. Principles of X-ray Navigation. Dissertation for the Doctoral Degree. Stanford: Stanford University, 1996

    Google Scholar 

  2. Sheikh S I, Pines D J. Spacecraft navigation using X-ray pulsars. J Guid Control Dyam, 2006, 29: 49–63

    Article  Google Scholar 

  3. Sheikh S I. The Use of Variable Celestial X-ray Sources for Spacecraft Navigation. Dissertation for the Doctoral Degree. College Park: Maryland University, 2005

    Google Scholar 

  4. Golshan A R, Sheikh S I. On pulse phase estimation and tracking of variable celestial X-ray sources. In: ION 63rd Annual Meeting, Cambridge, MA. Cambridge: ION, 2007. 413–422

    Google Scholar 

  5. Ashby N, Golshan A R. Minimum uncertainties in position and velocity determination using X-ray photons from millisecond pulsars. In: ION NTM, San Diego, CA. San Diego: ION, 2008. 110–118

    Google Scholar 

  6. Emadzadeh A A. On modeling and pulse phase estimation of X-ray pulsars. IEEE Trans Signal Process, 2010, 58(9): 4484–4495

    Article  MathSciNet  ADS  Google Scholar 

  7. Sala J, Urruela A, Villares X, et al. Feasibility study for a spacecraft navigation system relying on pulsar timing information. ARIADNA study 03/4202, 2004

  8. Hobbs G B, Edwards R T, Manchester R N. TEMPO2, a new pulsar-timing package-I. An overview. Mon Not R Astron Soc, 2006, 369: 655–672

    Article  ADS  Google Scholar 

  9. Edwards R T, Hobbs G B, Manchester R N. TEMPO2, a new pulsar timing package-II. The timing model and precision estimates. Mon Not R Astron Soc, 2006, 372: 1549–1574

    Article  ADS  Google Scholar 

  10. Huang L W, Liang B, Zhang T, et al. Navigation using binary pulsars. Sci China-Phys Mech Astron, 2012, 55(3): 527–539

    Article  ADS  Google Scholar 

  11. Emadzadeh A A, Speyer J L. Navigation in Space by X-ray Pulsars. Berlin: Springer, 2011

    Book  Google Scholar 

  12. Emadzadeh A A, Speyer J L. X-ray pulsar-based relative navigation using epoch folding. IEEE Trans Aerosp Electron Syst, 2011, 47(4): 2317–2328

    Article  ADS  Google Scholar 

  13. Kalata P R. The tracking index: A generalized parameter for α-β and α-β-γ target trackers. IEEE Trans Aerosp Electron Syst, 1984, AES-20(2): 174–182

    Article  ADS  Google Scholar 

  14. Kaplan G H. The IAU resolutions on astronomical reference systems, time scales, and earth rotation models: Explanation and implementation. US Nav Obs Circ, 2005, 179

  15. Soffel M, Klioner S A, Petit G, et al. The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: Explanatory supplement. Astron J, 2003, 126: 2687–2706

    Article  ADS  Google Scholar 

  16. Hellings R W. Relativistic effects in astronomical timing measurements. Astron J, 1986, 91: 650–659

    Article  ADS  Google Scholar 

  17. Petit G, Luzum B. IERS Conventions 2010. IERS technical note, No. 36, 2010, available: http://www.iers.org

  18. Damour T, Deruelle N. General relativistic celestial mechanics II. The post-Newtonian timing formula. Ann Inst H Poincaré (Physicque théorique), 1986, 44: 263–292

    MathSciNet  MATH  Google Scholar 

  19. Lorimer D R, Kramer M. Handbook of Pulsar Astronomy. Cambridge: Cambridge University Press, 2005

    Google Scholar 

  20. Fei B J, Pan G T, Xiao Y, et al. Motion equation of satellite in XNAV (in Chinese). Chin J Space Sci, 2011, 31(2): 254–259

    Google Scholar 

  21. Taylor J H, Weisberg J M. Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16. Astrophys J, 1989, 345: 434–450

    Article  ADS  Google Scholar 

  22. Manchester R N, Hobbs G B, Teoh A, et al. The Australia telescope national facility pulsar catalogue. Astron J, 2005, 129: 1993–2006

    Article  ADS  Google Scholar 

  23. The Australia Telescope National Facility (ATNF) Pulsar Catalogue. 2011, available: http://www.atnf.csiro.au/research/pulsar/psrcat

  24. Damour T, Taylor J H. Strong-field tests of relativistic gravity and binary pulsars. Phys Rev D, 1992, 45: 1840–1868

    Article  ADS  Google Scholar 

  25. Lyne A G, Manchester R N, N D’Amico, et al. An eclipsing millisecond pulsar in the globular cluster Terzan 5. Nature, 1990, 347: 650–652

    Article  ADS  Google Scholar 

  26. Kramer M, Xilouris K M, Lorimer D R, et al. The characteristics of millisecond pulsar emission: I. Spectra, pulse shapes and the beaming fraction. Astrophys J, 1998, 501: 270–285

    Article  ADS  Google Scholar 

  27. Stephens S A, Thomas J B. Controlled-root formulation for digital phase-locked loops. IEEE Trans Aerosp Electron Syst, 1995, 31(1): 78–95

    Article  ADS  Google Scholar 

  28. Huang L W, Liang B, Zhang T, et al. An autonomous navigation method for GEO satellites using X-ray pulsars. In: 3rd ISSCAA, Harbin, China. Piscataway: IEEE, 2010. 529–534

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiangWei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Liang, B. & Zhang, T. Pulse phase and doppler frequency estimation of X-ray pulsars under conditions of spacecraft and binary motion and its application in navigation. Sci. China Phys. Mech. Astron. 56, 848–858 (2013). https://doi.org/10.1007/s11433-013-5001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5001-0

Keywords

Navigation