Science China Physics, Mechanics and Astronomy

, Volume 56, Issue 1, pp 207–221 | Cite as

Carbon-based spintronics

Review Progress of Projects Supported by NSFC · Spintronics

Abstract

Carbon-based spintronics refers mainly to the spin injection and transport in carbon materials including carbon nanotubes, graphene, fullerene, and organic materials. In the last decade, extraordinary development has been achieved for carbon-based spintronics, and the spin transport has been studied in both local and nonlocal spin valve devices. A series of theoretical and experimental studies have been done to reveal the spin relaxation mechanisms and spin transport properties in carbon materials, mostly for graphene and carbon nanotubes. In this article, we provide a brief review on spin injection and transport in graphene, carbon nanotubes, fullerene and organic thin films.

Keywords

carbon spintronics spin injection spin transport spin valve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johnson M, Silsbee R H. Interficial charge-spin couplin — injection and detection of spin magnetization in metals. Phys Rev Lett, 1985, 55(17): 1790–1793ADSCrossRefGoogle Scholar
  2. 2.
    Baumberg J J, Awschalom D D, Samarth N et al. Spin beats and dynamical magnetization in quantum structures. Phys Rev Lett, 1994, 72(5): 717–720ADSCrossRefGoogle Scholar
  3. 3.
    Lou X H, Awschalom D D, Samarth N, et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nat Phys, 2007, 3(3): 197–202CrossRefGoogle Scholar
  4. 4.
    Tsukagoshi K, Alphenaar B W, Ago H. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature, 1999, 401(6753): 572–574ADSCrossRefGoogle Scholar
  5. 5.
    Zhao B, Monch I, Vinzelberg H, et al. Spin-coherent transport in ferromagnetically contacted carbon nanotubes. Appl Phys Lett, 2002, 80(17): 3144–3146ADSCrossRefGoogle Scholar
  6. 6.
    Kim J R, So H M, Kim J J, et al. Spin-dependent transport properties in a single-walled carbon nanotube with mesoscopic Co contacts. Phys Rev B, 2002, 66(23): 233401ADSCrossRefGoogle Scholar
  7. 7.
    Krompiewski S. Spin-polarized transport through carbon nanotubes. Physica Status Solidi B-Basic Solid State Phys, 2005, 242(2): 226–233ADSCrossRefGoogle Scholar
  8. 8.
    Hill E W, Geim A K, Novoselov K, et al. Graphene spin valve devices. IEEE Trans Magn, 2006, 42(10): 2694–2696ADSCrossRefGoogle Scholar
  9. 9.
    Tombros N, Jozsa C, Popinciuc M, et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature, 2007, 448(7153): 571–574ADSCrossRefGoogle Scholar
  10. 10.
    Cho S J, Chen Y F, Fuhrer M S. Gate-tunable graphene spin valve. Appl Phys Lett, 2007, 91(12): 123105ADSCrossRefGoogle Scholar
  11. 11.
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669ADSCrossRefGoogle Scholar
  12. 12.
    Huertas-Hernando D, Guinea F, Brataas A. Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys Rev B, 2006, 74(15): 155426ADSCrossRefGoogle Scholar
  13. 13.
    Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev Modern Phys, 2009, 81(1): 109–162ADSCrossRefGoogle Scholar
  14. 14.
    Neto A C, Guinea F, Peres N M R. Drawing conclusions from graphene. Phys World, 2006, 19(11): 33–37Google Scholar
  15. 15.
    Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev Modern Phys, 2009, 81(1): 109–162ADSCrossRefGoogle Scholar
  16. 16.
    Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200ADSCrossRefGoogle Scholar
  17. 17.
    Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201–204ADSCrossRefGoogle Scholar
  18. 18.
    Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the Klein paradox in graphene. Nat Phys, 2006, 2(9): 620–625CrossRefGoogle Scholar
  19. 19.
    Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat Nanotech, 2008, 3(8): 491–495ADSCrossRefGoogle Scholar
  20. 20.
    Elias D C, Gorbachev R V, Mayorov A S, et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat Phys, 2011, 7(9): 701–704CrossRefGoogle Scholar
  21. 21.
    Schmidt G, Ferrand D, Molenkamp L W, et al. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys Rev B, 2000, 62(8): R4790–R4793ADSCrossRefGoogle Scholar
  22. 22.
    Wang W H, Pi K, Li Y, et al. Magnetotransport properties of mesoscopic graphite spin valves. Phys Rev B, 2008, 77(2): 020402ADSCrossRefGoogle Scholar
  23. 23.
    Dlubak B, Martin M B, Deranlot C, et al. Highly efficient spin transport in epitaxial graphene on SiC. Nat Phys, 2012, 8(7): 557–561CrossRefGoogle Scholar
  24. 24.
    de Heer W A, Berger C, Ruan M, et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc National Acad Sci USA, 2011, 108(41): 16900–16905ADSCrossRefGoogle Scholar
  25. 25.
    Berger C, Song Z M, Li T B, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 2004, 108(52): 19912–19916CrossRefGoogle Scholar
  26. 26.
    Johnson M, Silsbee R H. Coupling of electronic charge and spin at a ferromagnetic-paramagnetic metal interface. Phys Rev B, 1988, 37(10): 5312–5325ADSCrossRefGoogle Scholar
  27. 27.
    Jedema F J, Heersche H B, Filip A T, et al. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature, 2002, 416(6882): 713–716ADSCrossRefGoogle Scholar
  28. 28.
    Tombros N, van der Molen S J, van Wees B J. Separating spin and charge transport in single-wall carbon nanotubes. Phys Rev B, 2006, 73(23): 233403ADSCrossRefGoogle Scholar
  29. 29.
    Johnson M, Silsbee R H. Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys Rev B, 1987, 35(10): 4959–4972ADSCrossRefGoogle Scholar
  30. 30.
    Aronov A G. Spin injection in metals and polarization of nuclei. JETP Lett, 1976, 24(1): 32–34ADSGoogle Scholar
  31. 31.
    Yang T Y, Balakrishnan J, Volmer F, et al. Observation of long spin-relaxation times in bilayer graphene at room temperature. Phys Rev Lett, 2011, 107(4): 047206ADSCrossRefGoogle Scholar
  32. 32.
    Han W, Kawakami R K. Spin Relaxation in single-layer and bilayer graphene. Phys Rev Lett, 2011, 107(4): 047207ADSCrossRefGoogle Scholar
  33. 33.
    Maassen T, Dejene F K, Guimarães M H D, et al. Comparison between charge and spin transport in few-layer graphene. Phys Rev B, 2011, 83(11): 115410ADSCrossRefGoogle Scholar
  34. 34.
    Rashba E I. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys Rev B, 2000, 62(24): R16267–R16270ADSCrossRefGoogle Scholar
  35. 35.
    Han W, Pi K, Bao W, et al. Electrical detection of spin precession in single layer graphene spin valves with transparent contacts. Appl Phys Lett, 2009, 94(22): 222109ADSCrossRefGoogle Scholar
  36. 36.
    Han W, Wang W H, Pi K, et al. Electron-hole asymmetry of spin injection and transport in single-layer graphene. Phys Rev Lett, 2009, 102(13): 137205ADSCrossRefGoogle Scholar
  37. 37.
    Han W, Pi K, McCreary K M, et al. Tunneling spin injection into single layer graphene. Phys Rev Lett, 2010, 105(16): 167202ADSCrossRefGoogle Scholar
  38. 38.
    Popinciuc M, Józsa C, Zomer P J, et al. Electronic spin transport in graphene field-effect transistors. Phys Rev B, 2009, 80(21): 214427ADSCrossRefGoogle Scholar
  39. 39.
    Józsa C, Popinciuc M, Tombros N, et al. Controlling the efficiency of spin injection into graphene by carrier drift. Phys Rev B, 2009, 79(8): 081402ADSCrossRefGoogle Scholar
  40. 40.
    Elliott R J. Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys Rev, 1954, 96(2): 266–279ADSMATHCrossRefGoogle Scholar
  41. 41.
    Yafet Y. G-factors and spin-lattice relaxation of conduction electrons. Solid State Phys-Adv Res Appl, 1963, 14: 1–98Google Scholar
  42. 42.
    Dyakonov M I, Perel V I. Spin relaxation of conduction electrons in noncentrosymmetric semiconductors. Sov Phys Solid State Ussr, 1972, 13(12): 3023–3026Google Scholar
  43. 43.
    Dymnikov V D, Dyakonov M I, Perel V I. Anisotropy of momentum distribution of photoexcited electrons and polarization of hot luminescence in semiconductors. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1976, 71(12): 2373–2380Google Scholar
  44. 44.
    Ertler C, Konschuh S, Gmitra M, et al. Electron spin relaxation in graphene: The role of the substrate. Phys Rev B, 2009, 80(4): 041405ADSCrossRefGoogle Scholar
  45. 45.
    Castro Neto A H, Guinea F. Impurity-induced spin-orbit coupling in graphene. Phys Rev Lett, 2009, 103(2): 026804ADSCrossRefGoogle Scholar
  46. 46.
    Józsa C, Maassen T, Popinciuc M, et al. Linear scaling between momentum and spin scattering in graphene. Phys Rev B, 2009, 80(24): 241403CrossRefGoogle Scholar
  47. 47.
    Pi K, Han W, McCreary K M, et al. Manipulation of spin transport in graphene by surface chemical doping. Phys Rev Lett, 2010, 104(18): 187201ADSCrossRefGoogle Scholar
  48. 48.
    Han W, Chen J R, Wang D Q, et al. Spin relaxation in single-layer graphene with tunable mobility. Nano Lett, 2012, 12(7): 3443–3447ADSCrossRefGoogle Scholar
  49. 49.
    Huertas-Hernando D, Guinea F, Brataas A. Spin relaxation times in disordered graphene. Eur Phys J, 2007, 148: 177–181Google Scholar
  50. 50.
    Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146(9–10): 351–355ADSCrossRefGoogle Scholar
  51. 51.
    Guinea F. Charge distribution and screening in layered graphene systems. Phys Rev B, 2007, 75(23): 235433ADSCrossRefGoogle Scholar
  52. 52.
    Koshino M. Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys Rev B, 2010, 81(12): 125304ADSCrossRefGoogle Scholar
  53. 53.
    Wang D Q, Liu X F, He L, et al. Manipulating graphene mobility and charge neutral point with ligand-bound nanoparticles as charge reservoir. Nano Lett, 2010, 10(12): 4989–4993ADSCrossRefGoogle Scholar
  54. 54.
    Goto H, Kanda A, Sato T, et al. Gate control of spin transport in multilayer graphene. Appl Phys Lett, 2008, 92(21): 212110ADSCrossRefGoogle Scholar
  55. 55.
    Nakada K, Fujita M, Dresselhaus G, et al. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys Rev B, 1996, 54(24): 17954–17961ADSCrossRefGoogle Scholar
  56. 56.
    Wakabayashi K, Fujita M, Ajiki H, et al. Electronic and magnetic properties of nanographite ribbons. Phys Rev B, 1999, 59(12): 8271–8282ADSCrossRefGoogle Scholar
  57. 57.
    Pisani L, Chan J A, Montanari B, et al. Electronic structure and magnetic properties of graphitic ribbons. Phys Rev B, 2007, 75(6): 064418ADSCrossRefGoogle Scholar
  58. 58.
    Fujita M, Wakabayashi K, Nakada K, et al. Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn, 1996, 65(7): 1920–1923ADSCrossRefGoogle Scholar
  59. 59.
    Son Y W, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons. Phys Rev Lett, 2006, 97(21): 216803ADSCrossRefGoogle Scholar
  60. 60.
    Son Y W, Cohen M L, Louie S G. Half-metallic graphene nanoribbons. Nature, 2006, 444(7117): 347–349ADSCrossRefGoogle Scholar
  61. 61.
    Wimmer M, Adagideli İ, Berber S, et al. Spin currents in rough graphene nanoribbons: universal fluctuations and spin injection. Phys Rev Lett, 2008, 100(17): 177207ADSCrossRefGoogle Scholar
  62. 62.
    Muñoz-Rojas F, Fernández-Rossier J, Palacios J J. Giant magnetoresistance in ultrasmall graphene based devices. Phys Rev Lett, 2009, 102(13): 136810ADSCrossRefGoogle Scholar
  63. 63.
    Kim W Y, Kim K S. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat Nano, 2008, 3(7): 408–412CrossRefGoogle Scholar
  64. 64.
    Zhang Y T, Jiang H, Sun Q F, et al. Spin polarization and giant magnetoresistance effect induced by magnetization in zigzag graphene nanoribbons. Phys Rev B, 2010, 81(16): 165404ADSCrossRefGoogle Scholar
  65. 65.
    Lakshmi S, Roche S, Cuniberti G. Spin-valve effect in zigzag graphene nanoribbons by defect engineering. Phys Rev B, 2009, 80(19): 193404ADSCrossRefGoogle Scholar
  66. 66.
    Yang R, Zhang L C, Wang Y, et al. An anisotropic etching effect in the graphene basal plane. Adv Mater, 2010, 22(36): 4014–4019CrossRefGoogle Scholar
  67. 67.
    Shi Z W, Yang R, Zhang L C, et al. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv Mater, 2011, 23(27): 3061–3065CrossRefGoogle Scholar
  68. 68.
    Kosynkin D V, Higginbotham Amanda L, Sinitskii Alexander, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240): 872–876ADSCrossRefGoogle Scholar
  69. 69.
    Jiao L, Wang X R, Diankov G, et al. Facile synthesis of high-quality graphene nanoribbons. Nat Nano, 2010, 5(5): 321–325CrossRefGoogle Scholar
  70. 70.
    Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, et al. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett, 2009, 9(7): 2600–2604ADSCrossRefGoogle Scholar
  71. 71.
    Jia X T, Hofmann M, Meunier V, et al. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science, 2009, 323(5922): 1701–1705ADSCrossRefGoogle Scholar
  72. 72.
    Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58ADSCrossRefGoogle Scholar
  73. 73.
    Cassell A M, Raymakers J A, Kong J, et al. Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B, 1999, 103(31): 6484–6492CrossRefGoogle Scholar
  74. 74.
    Ren Z F, Huang Z P, Xu J W, et al. Synthesis of large arrays of wellaligned carbon nanotubes on glass. Science, 1998, 282(5391): 1105–1107ADSCrossRefGoogle Scholar
  75. 75.
    Li W Z, Xie S S, Qian L X, et al. Large-scale synthesis of aligned carbon nanotubes. Science, 1996, 274(5293): 1701–1703ADSCrossRefGoogle Scholar
  76. 76.
    Maser W K, Munoz E, Benito A M, et al. Production of high-density single-walled nanotube material by a simple laser-ablation method. Chem Phys Lett, 1998, 292(4-6): 587–593ADSCrossRefGoogle Scholar
  77. 77.
    Louie S. Electronic Properties, Junctions, and Defects of Carbon Nanotubes. Berlin, Heidelberg: Springer, 2001. 113–145CrossRefGoogle Scholar
  78. 78.
    Kim J R, So H M, Kim J J, et al. Spin-dependent transport properties in a single-walled carbon nanotube with mesoscopic Co contacts. Phys Rev B, 2002, 66(23): 233401ADSCrossRefGoogle Scholar
  79. 79.
    Tombros N, van der Molen S J, van Wees B J. Separating spin and charge transport in single-wall carbon nanotubes. Phys Rev B, 2006, 73(23): 233403ADSCrossRefGoogle Scholar
  80. 80.
    Yang H, Itkis Mikhail E, Moriya R, et al. Nonlocal spin transport in single-walled carbon nanotube networks. Phys Rev B, 2012, 85(5): 052401ADSCrossRefGoogle Scholar
  81. 81.
    Jensen A, Hauptmann Jonas R, Nygård J, et al. Magnetoresistance in ferromagnetically contacted single-wall carbon nanotubes. Phys Rev B, 2005, 72(3): 035419ADSCrossRefGoogle Scholar
  82. 82.
    Hueso L E, Pruneda Jose M, Ferrari V, et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature, 2007, 445(7126): 410–413ADSCrossRefGoogle Scholar
  83. 83.
    Nagabhirava B, Bansal T, Sumanasekera G U, et al. Gated spin transport through an individual single wall carbon nanotube. Appl Phys Lett, 2006, 88(2): 023503ADSCrossRefGoogle Scholar
  84. 84.
    Soulen R J, Byers J M, Osofsky M S, et al. Measuring the spin polarization of a metal with a superconducting point contact. Science, 1998, 282(5386): 85–88ADSCrossRefGoogle Scholar
  85. 85.
    Meservey R, Tedrow P M. Spin-polarized electron-tunneling. Phys Rep-Rev Sect Phys Lett, 1994, 238(4): 173–243Google Scholar
  86. 86.
    Park J H, Vescovo E, Kim H J, et al. Direct evidence for a halfmetallic ferromagnet. Nature, 1998, 392(6678): 794–796ADSCrossRefGoogle Scholar
  87. 87.
    Bowen M, Bibes M, Barthelemy A, et al. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments. Appl Phys Lett, 2003, 82(2): 233–235ADSCrossRefGoogle Scholar
  88. 88.
    Semenov Y G, Kim K W, Iafrate G J. Electron spin relaxation in semiconducting carbon nanotubes: The role of hyperfine interaction. Phys Rev B, 2007, 75(4): 045429ADSCrossRefGoogle Scholar
  89. 89.
    Semenov Y G, Zavada J M, Kim K W. Electron spin relaxation in carbon nanotubes. Phys Rev B, 2010, 82(15): 155449ADSCrossRefGoogle Scholar
  90. 90.
    Borysenko K M, Semenov Y G, Kim K W, et al. Electron spin relaxation via flexural phonon modes in semiconducting carbon nanotubes. Phys Rev B, 2008, 77(20): 205402ADSCrossRefGoogle Scholar
  91. 91.
    Man H T, Wever I J W, Morpurgo A F. Spin-dependent quantum interference in single-wall carbon nanotubes with ferromagnetic contacts. Phys Rev B, 2006, 73(24): 241401ADSCrossRefGoogle Scholar
  92. 92.
    Sahoo S, Kontos T, Furer J, et al. Electric field control of spin transport. Nat Phys, 2005, 1(2): 99–102CrossRefGoogle Scholar
  93. 93.
    Schäpers T, Nitta J, Heersche H B, et al. Interference ferromagnet/ semiconductor/ferromagnet spin field-effect transistor. Phys Rev B, 2001, 64(12): 125314ADSCrossRefGoogle Scholar
  94. 94.
    Gunnarsson G, Trbovic J, Schönenberger C. Large oscillating nonlocal voltage in multiterminal single-wall carbon nanotube devices. Phys Rev B, 2008, 77(20): 201405ADSCrossRefGoogle Scholar
  95. 95.
    Makarovski A, Zhukov A, Liu J, et al. Four-probe measurements of carbon nanotubes with narrow metal contacts. Phys Rev B, 2007, 76(16): 161405ADSCrossRefGoogle Scholar
  96. 96.
    Xiong Z H, Wu D, Vardeny Z V, et al. Giant magnetoresistance in organic spin-valves. Nature, 2004, 427(6977): 821–824ADSCrossRefGoogle Scholar
  97. 97.
    Dediu V, Murgia M, Matacotta F C, et al. Room temperature spin polarized injection in organic semiconductor. Solid State Commun, 2002, 122(3–4): 181–184ADSCrossRefGoogle Scholar
  98. 98.
    Majumdar S, Laiho R, Laukkanen P, et al. Application of regioregular polythiophene in spintronic devices: Effect of interface. Appl Phys Lett, 2006, 89(12): 122114ADSCrossRefGoogle Scholar
  99. 99.
    Zare-Kolsaraki H, Micklitz H. Spin-dependent transport in films composed of Co clusters and fullerenes. Eur Phys J B-Condensed Matter Complex Syst, 2004, 40(1): 103–109CrossRefGoogle Scholar
  100. 100.
    Gobbi M, Golmar F, Llopis R, et al. Room-temperature spin transport in c-60-based spin valves. Adv Mater, 2011, 23(14): 1609–1613CrossRefGoogle Scholar
  101. 101.
    Awschalom D D, Flatte M E. Challenges for semiconductor spintronics. Nat Phys, 2007, 3(3): 153–159CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations