Skip to main content
Log in

Electron transport properties of magnetic granular films

  • Review
  • Progress of Projects Supported by NSFC · Spintronics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we present a review of electron transport properties of magnetic granular films. Magnetic granular films are nanocomposite materials which consist of magnetic nanoparticles embedded in a nonmagnetic matrix or assembling of magnetic nanoparticles. According to the style of the nonmagnetic matrix, microstructure and the electron transport mechanism of the films, the magnetic granular films were divided into three groups: (1) magnetic metal-metal granular films, (2) magnetic metal-insulator granular films and (3) magnetic nanocluster-assembled granular films. Moreover, we also systematically review the magnetic properties, transport properties and magnetoresistance effect of size-monodispersed Co and Fe nanocluster-assembled films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gittleman J, Goldstein, Bozowski S. Magnetic poperties of ganular nckel flms. Phys Rev B, 1972, 5: 3609–3621

    ADS  Google Scholar 

  2. Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett, 1988, 61: 2472–2475

    ADS  Google Scholar 

  3. Wolf S A. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294: 1488–1495

    ADS  Google Scholar 

  4. Xiao Q, Jiang J S, Chien C L. Giant magnetoresistance in nonmultilayer magnetic systems. Phys Rev Lett, 1992, 68: 3749–3752

    ADS  Google Scholar 

  5. Berkowitz A E, Mitchell J R, Carey M J, et al. Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys Rev Lett, 1992, 68: 3745–3748

    ADS  Google Scholar 

  6. Bai H L, Jiang E Y. Tunnel magnetoresistance (TMR) in ferromagnetic metalinsulator granular films. Chin Sci Bull, 2001, 46: 529–537

    Google Scholar 

  7. Fujimori H, Mitani S, Ohnuma S. Tunnel-type GMR in metal-nonmetal granular alloy thin films. Mater Sci Eng B, 1995, 31: 219–223

    Google Scholar 

  8. Sang H, Xu N, Du J H, et al. Giant magnetoresistance and microstructures in CoAg granular films fabricated using ion-beam co-sputtering technique. Phys Rev B, 1996, 53: 15023–15026

    ADS  Google Scholar 

  9. Peng D L, Sumiyama K, Yamamuro S, et al. Characteristic tunneltype conductivity and magnetoresistance in a CoO-coated monodispersive Co cluster assembly. Appl Phys Lett, 1999, 74: 76–78

    ADS  Google Scholar 

  10. Peng D L, Sumiyama K, Konno T J, et al. Characteristic transport properties of CoO-coated monodispersive Co cluster assemblies. Phys Rev B, 1999, 60: 2093–2100

    ADS  Google Scholar 

  11. Xiong P, Xiao G, Wang J Q, et al. Extraordinary Hall effect and giant magnetoresistance in the granular Co-Ag system. Phys Rev Lett, 1992, 69: 3220–3223

    ADS  Google Scholar 

  12. Chien C L, Xiao J Q, Jiang J S. Giant negative magnetoresistance in granular ferromagnetic systems. J Appl Phys, 1993, 73(10): 5309–5314

    ADS  Google Scholar 

  13. Tsoukatos A, Wan H, Hadjipanayis G C, et al. Giant magnetoresistance studies in (Fe,Co)-Ag films. J Appl Phys, 1993, 73: 5509–5511

    ADS  Google Scholar 

  14. Rabedeau T A, Toney M F, Marks R F, et al. Giant magnetoresistance and Co-cluster structure in phase-separated Co-Cu granular alloys. Phys Rev B, 1993, 48: 16810–16813

    ADS  Google Scholar 

  15. Watson M L, Barnard J A, Hossain S, et al. Observation of giant magnetoresistance in Ag-Ni-Fe alloy films. J Appl Phys, 1993, 73: 5506–5508

    ADS  Google Scholar 

  16. Zhang S, Levy P M. Conductivity and magnetoresistance in magnetic granular films. J Appl Phys, 1993, 73: 5315–5319

    ADS  Google Scholar 

  17. Zhang S. Theory of giant magnetoresistance in magnetic granular films. Appl Phys Lett, 1992, 61: 1855–1857

    ADS  Google Scholar 

  18. Rubinstein M. Classical theory of giant magnetoresistance in granular metals. Phys Rev B, 1994, 50: 3830–3838

    ADS  Google Scholar 

  19. Allia P, Knobel M, Tiberto P, et al. Magnetic properties and giant magnetoresistance of melt-spun granular Cu100−x -Cox alloys. Phys Rev B, 1995, 52: 15398–15411

    ADS  Google Scholar 

  20. Kim J H, Xiao J Q, Chien C L, et al. A model for giant magnetoresis-tance in magnetic granular solids. Solid State Commun, 1994, 89: 157–161

    ADS  Google Scholar 

  21. Xiao J Q, Jiang J S, Chien C L. Giant magnetoresistance in the granular Co-Ag system. Phys Rev B, 1992, 46: 9266–9269

    ADS  Google Scholar 

  22. Wan H, Tsoukatos A, Hadjipanayis G C, et al. Direct evidence of phase separation in as-deposited Fe(Co)-Ag films with giant magnetoresistance. Phys Rev B, 1994, 49: 1524–1527

    ADS  Google Scholar 

  23. Sang H, Jiang Z S, Guo G, et al. Study on GMR in Co-Ag thin granular films. J Magn Magn Mater, 1995, 140-144: 589–590

    ADS  Google Scholar 

  24. Sugawara T, Takanashi K, Hono K, et al. Study of giant magnetoresistance behavior in sputter-deposited Cr-Fe alloy films. J Magn Magn Mater, 1996, 159: 95–102

    ADS  Google Scholar 

  25. Yu R H, Zhang X X, Tejada J, et al. Giant magnetoresistance in magnetic granular Co15Cu85 alloys annealed by direct-current Joule heating. J Magn Magn Mater, 1996, 164: 99–104

    ADS  Google Scholar 

  26. Honda S, Nawate M, Tanaka M, et al. Giant magnetoresistance and superparamagnetic grains in Co-Ag granular films. J Appl Phys, 1997, 82: 764–771

    ADS  Google Scholar 

  27. Parent F, Tuaillon J, Stern L B, et al. Giant magnetoresistance in Co-Ag granular films preparedby low-energy cluster beam deposition. Phys Rev B, 1997, 55: 3683–3687

    ADS  Google Scholar 

  28. Franco V, Batlle X, Labarta A. CoFe-Cu granular alloys: From noninteracting particles to magnetic percolation. J Appl Phys, 1999, 85: 7328–7335

    ADS  Google Scholar 

  29. Ge S H, Li H H, Li Chao, et al. Giant magnetoresistance in electrodeposited Co-Cu granular film. J Phys-Condens Mat, 2000, 12: 5905–5916

    ADS  Google Scholar 

  30. Spizzo F, Angeli E, Bisero D, et al. GMR as a function of temperature in FeAg granular samples: the effect of magnetic interactions. J Magn Magn Mater, 2003, 262: 88–91

    ADS  Google Scholar 

  31. Wang J Q, Dao N, Kim N H, et al. Thickness dependence of magneto-transport in Cu-Co granular thin films. J Appl Phys, 2004, 95: 6762–6764

    ADS  Google Scholar 

  32. Kenane S, Voiron J, Benbrahim N, et al. Magnetic properties and giant magnetoresistance in electrodeposited Co-Ag granular films. J Magn Magn Mater, 2006, 297: 99–106

    ADS  Google Scholar 

  33. Tiwari A, Senthil Kumar M. Effect of addition of Ni on the structure and giant magnetoresistance in Fe-Cu films. Physica B, 2007, 387: 63–68

    ADS  Google Scholar 

  34. Wang C, Xiao X, Hu H, et al. Nanoparticle morphology in FeNi-Cu granular films with giant magnetoresistance. Physica B, 2007, 392: 72–78

    ADS  Google Scholar 

  35. Dubiel B, Wolf D, Czyrska F A. TEM and electron holography analyses of granular and thin layered Cu-Co magnetic materials. Ultramicroscopy, 2010, 110: 433v437

    Google Scholar 

  36. Garcia-Torres J, Vall S E, G Mez E. Temperature dependence of GMR and effect of annealing on electrodeposited Co-Ag granular films. J Magn Magn Mater, 2010, 322: 3186–3191

    ADS  Google Scholar 

  37. Rajasekaran N, Mohan S, Arout C J, et al. Giant magnetoresistance (GMR) and ferromagnetic properties of DC and pulse electrode-posited Cu-Co alloys. J Magn Magn Mater, 2012, 324: 2983–2988

    ADS  Google Scholar 

  38. Chen G, Wu X F, Chen W, et al. Influence of Dy content on the structure and giant magnetoresistance of Dyx(Co40Ag60)100−x granular films. Appl Surf Sci, 2012, 258: 2883–2885

    Google Scholar 

  39. Xing L, Chang Y C, Salamon M B, et al. Magnetotransport properties of magnetic granular solids: The role of unfilled d bands. Phys Rev B, 1993, 48: 6728–6731

    ADS  Google Scholar 

  40. Allia P, Tiberto P, Vinai F. Correlation effects among nanometre sized clusters in Cu-Co melt-spun alloys with giant magnetoresistance. Philos Mag, 1997, 76: 447–455

    Google Scholar 

  41. Gu R Y, Sheng L, Xing D Y, et al. Macroscopic theory of giant magnetoresistance in magnetic granular metals. Phys Rev B, 1996, 53: 11685–11691

    ADS  Google Scholar 

  42. Yang R, Song W J. The shape and size dependence of giant magnetoresistance in magnetic granular films. Phys Lett A, 1998, 244: 139–143

    ADS  Google Scholar 

  43. Altbir D, D’albuquerque e Castro J, Vargas P. Magnetic coupling in metallic granular systems. Phys Rev B, 1996, 54: R6823–R6826

    ADS  Google Scholar 

  44. Wang J Q, Xiao G. Transition-metal granular solids: Microstructure, magnetic properties, and giant magnetoresistance. Phys Rev B, 1994, 49: 3982–3996

    ADS  Google Scholar 

  45. Battle X, Labarta A. Finite-size effects in fine particles: magnetic and transport properties. J Phys D-Appl Phys, 2002, 35: R15–R42

    ADS  Google Scholar 

  46. Ju Y, Xu C, Li Z Y. Temperature dependence of giant magnetoresistance in CoAg granular composite. J Magn Magn Mater, 2001, 223: 267–272

    ADS  Google Scholar 

  47. Neugebauer C A, Webb M B. Electrical conduction mechanism in ultrathin, evaporated metal films. J Appl Phys, 1962, 33: 74–82

    ADS  Google Scholar 

  48. Bai H L, Jiang E Y. Tunnel magnetoresistance (TMR) in ferromagnetic metalinsulator granular films. Chin Sci Bull, 2001, 46: 529–537

    Google Scholar 

  49. Neugebauer C A. Resistivity of cermet films containing oxides of silicon. Thin Solid Films, 1970, 6(6): 443–447

    MathSciNet  ADS  Google Scholar 

  50. Abeles B, Sheng P, Coutts M D, et al. Structural and electrical properties of granular metal films. Adv Phys, 1975, 24: 407–461

    ADS  Google Scholar 

  51. Sheng P, Abeles B, Arie Y. Hopping conductivity in granular metals. Phys Rev Lett, 1973, 31: 44–47

    ADS  Google Scholar 

  52. Sheng P, Abeles B. Voltage-Induced tunneling conduction in granular metals at low temperatures. Phys Rev Lett, 1972, 28: 34–37

    ADS  Google Scholar 

  53. Helman J, Abeles B. Tunneling of spin-polarized electrons and magnetoresistance in granular Ni films. Phys Rev Lett, 1976, 37: 1429–1432

    ADS  Google Scholar 

  54. Mitani S, Fujimori H, Ohnuma S. Spin-dependent tunneling phenomena in insulating granular systems. J Magn Magn Mater, 1997, 165: 141–148

    ADS  Google Scholar 

  55. Inoue J, Maekawa S. Theory of tunneling magnetoresistance in granular magnetic films. Phys Rev B, 1996, 53: 11927–11929

    ADS  Google Scholar 

  56. Hayakawa Y, Hasegawa N, Makino A, et al. Microstructure and magnetoresistance of Fe-Hf-O films with high electrical resistivity. J Magn Magn Mater, 1996, 154: 175–182

    ADS  Google Scholar 

  57. Kobayashi N, Ohnuma S, Murakami S, et al. Enhancement of low-field-magnetoresistive response of tunnel-type magnetoresistance in metal-nonmetal granular thin films. J Magn Magn Mater, 1998, 188: 30–34

    ADS  Google Scholar 

  58. Milner A, Gerber A, Groisman B, et al. Spin-dependent electronic transport in granular ferromagnets. Phys Rev Lett, 1996, 76: 475–478

    ADS  Google Scholar 

  59. Yang W, Jiang Z S, Wang W N, et al. Magnetoresistance of Fe-SiO2 granular films. Solid State Commun, 1997, 104: 479–484

    ADS  Google Scholar 

  60. Mitani S, Fujimori H, Ohnuma S. Temperature dependence of tunneltype GMR in insulating granular systems. J Magn Magn Mater, 1998, 177: 919–920

    ADS  Google Scholar 

  61. Mitani S, Fujimori H, Takanashi K, et al. Tunnel-MR and spin electronics in metal-nonmetal granular systems. J Magn Magn Mater, 1999, 198-99: 179–184

    ADS  Google Scholar 

  62. Mitani S, Takahashi S, Takanashi K, et al. Enhanced magnetoresistance in insulating granular systems: Evidence for higher-order tunneling. Phys Rev Lett, 1998, 81: 2799–2802

    ADS  Google Scholar 

  63. Yakushiji K, Ernult F, Imamura H, et al. Enhanced spin accumulation and novel magnetotransport in nanoparticles. Nat Mater, 2005, 4: 57–61

    ADS  Google Scholar 

  64. Yakushiji K, Mitani S, Ernult F, et al. Spin-dependent tunneling and Coulomb blockade in ferromagnetic nanoparticles. Phys Rep, 2007, 451: 1–35

    ADS  Google Scholar 

  65. Sakai S, Yakushiji K, Mitani S, et al. Tunnel magnetoresistance in Co nanoparticle/Co-C60 compound hybrid system. Appl Phys Lett, 2006, 89: 113118–113113

    ADS  Google Scholar 

  66. Sakai S, Mitani S, Matsumoto Y, et al. Bias voltage dependence of tunneling magnetoresistance in granular C60-Co films with currentperpendicular-to-plane geometry. J Magn Magn Mater, 2012, 324: 1970–1974

    ADS  Google Scholar 

  67. Furubayashi T, Nakatani I. Giant magnetoresistance in granular Fe-MgF2 films. J Appl Phys, 1996, 79: 6258–6260

    ADS  Google Scholar 

  68. Honda S, Okada T, Nawate M, et al. Tunneling giant magnetoresistance in heterogeneous Fe-SiO2 granular films. Phys Rev B, 1997, 56: 14566–14573

    ADS  Google Scholar 

  69. Huang Y H, Hsu J H, Chen J W. Thickness dependence of tunneling magneto-resistance effect in granular Fe-Al2O3 films. IEEE T Magn, 1997, 33: 3556–3558

    ADS  Google Scholar 

  70. Zhao B, Yan X. Giant magnetoresistance in granular Fe-SiO2 film. J Appl Phys, 1997, 81: 4290–4292

    ADS  Google Scholar 

  71. Huang Y H, Hsu J H, Chen J W, et al. Granular Fe-Pb-O films with large tunneling magnetoresistance. Appl Phys Lett, 1998, 72: 2171–2173

    ADS  Google Scholar 

  72. Strijkers G J, Swagten H J M, Rulkens B, et al. Temperature dependence of the resistivity and tunneling magnetoresistance of sputtered FeHf(Si)O cermet films. J Appl Phys, 1998, 84: 2749–2753

    ADS  Google Scholar 

  73. Ge S H, Zhang S B, Chi J H, et al. The giant magnetoresistance effect of Fe-Al-O nano-structured granular films. J Phys D-Appl Phys, 2000, 33: 917–920

    ADS  Google Scholar 

  74. Xi L, Zhang Z Z, Wang J B, et al. The influence of microstructure on tunnelling magnetoresistance in Fe-SiO2 granular films. J Phys D-Appl Phys, 2000, 33: 621–626

    ADS  Google Scholar 

  75. Xu Q Y, Ni G, Sang H, et al. The tunneling magnetoresistance of Co35(SiO2)65 nanogranular films. J Appl Phys, 2000, 87: 3421–3423

    ADS  Google Scholar 

  76. Yakushiji K, Mitani S, Takanashi K, et al. Composition dependence of particle size distribution and giant magnetoresistance in Co-Al-O granular films. J Magn Magn Mater, 2000, 212: 75–81

    ADS  Google Scholar 

  77. Ge S H, Chi J H, Zhang Z G. The influence of oxygen flux on the tunnelling magnetoresistance effect of Co-Al-O granular thin films. J Phys D-Appl Phys 2001, 34: 167–173

    ADS  Google Scholar 

  78. Kalinin Y E, Sitnikov A V, Stognei O V, et al. Electrical properties and giant magnetoresistance of the CoFeB-SiO2 amorphous granular composites. Mater Sci Eng A-Struct, 2001, 304:941–945

    Google Scholar 

  79. Yonemura M, Naga S, Kamei K. Tunnel-type giant magnetoresisitance in Co-Al-Ta-O insulated granular system. J Appl Phys, 2001, 40: 740–745

    Google Scholar 

  80. Vovk A Y, Wang J Q, Pogoriliy A M, et al. Magneto-transport properties of CoFe-Al2O3 granular films in the vicinity of the percolation threshold. J Magn Magn Mater, 2002, 242: 476–478

    ADS  Google Scholar 

  81. Vovk A Y, Wang J Q, Zhou W, et al. Room temperature tunneling magnetoresistance of electron beam deposited (Co50Fe50)x(Al2O3)1−x cermet granular films. J Appl Phys, 2002, 91: 10017–10021

    ADS  Google Scholar 

  82. Yakushiji K, Mitani S, Takanashi K, et al. Tunnel magnetoresistance oscillations in current perpendicular to plane geometry of CoAlO granular thin films. J Appl Phys, 2002, 91: 7038–7040

    ADS  Google Scholar 

  83. Yakushiji K, Mitani S, Takanashi K, et al. Tunnel magnetoresistance oscillations associated with Coulomb staircases in insulating granular systems. J Phys D-Appl Phys, 2002, 35: 2422–2426

    ADS  Google Scholar 

  84. Stognei O V, Kalinin Y E, Zolotukhin I V, et al. Low temperature behaviour of the giant magnetoresistivity in CoFeB-SiOn granular composites. J Phys-Condens Mat, 2003, 15: 4267–4277

    ADS  Google Scholar 

  85. Liu H. Structure and magnetotransport properties of Fe3O4-SiO2 composite films reactively sputtered at room temperature. J Appl Phys, 2004, 95: 5661–5665

    ADS  Google Scholar 

  86. Kaji S, Oomi G, Hedo M, et al. Electrical transport and magnetoresistance in Co-Al-O granular films under high pressure. J Phys Soc, 2005, 74: 2783–2790

    ADS  Google Scholar 

  87. Kim J G, Ha J G, Koh J H, et al. Annealing effect of particle size distribution and giant magnetoresistance in insulating granular films. Thin Solid Films, 2006, 515: 2562–2566

    ADS  Google Scholar 

  88. Kim J G, Ha J G. Particle size distribution and GMR in Co46Al19O35 granular thin films by annealing. Mater Chem Phys, 2006, 96: 307–310

    Google Scholar 

  89. Liu H, Mi W B, Li Z Q, et al. Antiferromagnetic-coupling-induced magnetoresistance enhancement in Fex(TiO2)1−x films. Appl Phys Lett, 2006, 88(23): 232502

    ADS  Google Scholar 

  90. Mi W B, Liu H, Li Z Q, et al. Evolution of structure, magnetic and transport properties of sputtered films from Fe to Fe3O4. J Phys D-Appl Phys, 2006, 39: 5109–5115

    ADS  Google Scholar 

  91. Wang C Z, Rong Y H, HSU T Y. Designs of higher tunnelling giant magnetoresistance in granular films. Mater Lett, 2006, 60: 379–382

    Google Scholar 

  92. Tripathy D, Adeyeye A, Shannigrahi S. Magnetic and tunneling magnetoresistive properties of an all-oxide Fe3O4-Al2O3 granular system. Physical Review B, 2007, 76: 174429

    ADS  Google Scholar 

  93. Varalda J, Ortiz W A, De Oliveira A J A, et al. Tunnel magnetoresistance and Coulomb blockade in a planar assembly of cobalt nanoclusters embedded in TiO2. J Appl Phys, 2007, 101: 014318

    ADS  Google Scholar 

  94. Wang C Z, Xiao X G, Rong Y H, et al. Nanoparticle morphology in FeCo-SiO2 granular films with tunneling giant magnetoresistance. Mater Sci Eng: B, 2007, 141: 126–131

    Google Scholar 

  95. Wang X C, Mi W B, Jiang E Y, et al. Large magnetoresistance observed in facing-target sputtered Ni-doped CNx amorphous composite films. Acta Mater, 2007, 55: 3547–3553

    Google Scholar 

  96. Hao S F, Fan B, Wang L M, et al. Giant magnetoresistance in Co-Al2O3 granular films prepared by self-organized growth. J Magn Magn Mater, 2008, 320: 2062–2067

    Google Scholar 

  97. Quan Z Y, Xu X H, Li X L, et al. Investigation of structure and magnetoresistance in Co/ZnO films. J Appl Phys, 2010, 108: 103912

    ADS  Google Scholar 

  98. Fedotova J, Kasiuk J, Przewoznik J, et al. Effect of oxide shells on the magnetic and magnetotransport characteristics of oxidized FeCoZr nanogranules in Al2O3. J Alloy Comp, 2011, 509: 9869–9875

    Google Scholar 

  99. Fedotova J A, Przewoznik J, Kapusta C, et al. Magnetoresistance in FeCoZr-Al2O3nanocomposite films containing ‘metal core-oxide shell’ nanogranules. J Phys D-Appl Phys, 2011, 44: 495001

    Google Scholar 

  100. Kumar H, Ghosh S, Bürger D, et al. Role of Coulomb blockade and spin-flip scattering in tunneling magnetoresistance of FeCo-Si-O nanogranular films. J Appl Phys, 2011, 109: 073914

    ADS  Google Scholar 

  101. Peng D L, Sumiyama K, Hihara T, et al. Magnetic properties of monodispersed Co/CoO clusters. Phys Rev B, 2000, 61: 3103–3109

    ADS  Google Scholar 

  102. Peng D L, Asai T, Nozawa N, et al. Magnetic properties and magnetoresistance in small iron oxide cluster assemblies. Appl Phys Lett, 2002, 81: 4598–4600

    ADS  Google Scholar 

  103. Peng D L, Hihara T, Sumiyama K, et al. Structural and magnetic characteristics of monodispersed Fe and oxide-coated Fe cluster assemblies. J Appl Phys, 2002, 92: 3075

    ADS  Google Scholar 

  104. Peng D L, Sumiyama K, Hihara T, et al. Magnetic characteristics of monodispersed Co/CoO cluster assemblies. Scripta Mater, 2001, 44: 1471–1474

    Google Scholar 

  105. Peng D L, Hihara T, Sumiyama K. Electrical resistivity and magneto-resistance in monodispersed oxide-coated Fe cluster assemblies. J J Appl Phys, 2004, 43: 674–680

    ADS  Google Scholar 

  106. Carl A, Dumpich G, Wassermann E F. Incipient Anderson localization in thin PdxC1−x mixture films. Vacuum, 1990, 41: 1183–1185

    Google Scholar 

  107. Savini L, Bonetti E, Del Bianco L, et al. Observation of magnetoresistance in core-shell Fe-Fe oxide systems. J Appl Phys, 2002, 91: 8593–8595

    ADS  Google Scholar 

  108. Roilos M, Nagels P. Electrical measurements on CoO and NiO single crystals. Solid State Commun, 1964, 2: 285–290

    ADS  Google Scholar 

  109. Sato H, Sakamoto I, Fierz C. Transport properties of Al/Ni and Al/Ag multilayer systems. J Phys-Condens Mat, 1991, 3: 9067–9078

    ADS  Google Scholar 

  110. Uher C, Clarke R, Zheng G G, et al. Interplay of superconductivity, magnetism, and localization in Mo/Ni superlattices. Phys Rev B, 1984, 30: 453–455

    ADS  Google Scholar 

  111. Pérez-Frías M T, Vicent J L. Resistivity and Hall effect in sputtered Nb/Ni multilayers. Phys Rev B, 1988, 38: 9503–9510

    ADS  Google Scholar 

  112. Carl A, Dumpich G, Hallfarth D. Magnetoresistance in thin palladium-carbon mixture films. Phys Rev B, 1989, 39: 915–922

    ADS  Google Scholar 

  113. Carl A, Dumpich G, Hallfarth D. Antilocalization and electronelectron interaction in thin granular palladium-carbon mixture films. Phys Rev B, 1989, 39: 3015–3020

    ADS  Google Scholar 

  114. Carl A, Dumpich G, Wassermann E F. Structural and electrical properties of granular palladium cluster films. Thin Solid Films, 1990, 193-194: 1065–1072

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DongLiang Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, D., Wang, J., Wang, L. et al. Electron transport properties of magnetic granular films. Sci. China Phys. Mech. Astron. 56, 15–28 (2013). https://doi.org/10.1007/s11433-012-4969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4969-1

Keywords

Navigation