Skip to main content
Log in

Study of doping effect, phase separation and heterojunction in CMR manganites

  • Review
  • Progress of Projects Supported by NSFC · Spintronics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Mixed-valence manganites have attracted considerable research focus in recent years not only because of the potential application of colossal magnetoresistance (CMR) in magnetic devices, but also because of many intriguing physical properties observed in these materials. Doping elements at A-site can alter the filling of 3d Mn band and the tolerance factor. Therefore the hole- and electron-doped CMR manganites exhibit a rich phase diagram. In addition, more theoretical and experimental results suggest that phase separation is a critical factor for the understanding of CMR phenomena. Recently, there is an increasing interest in the fabrication and investigation on manganite-based heterojunction, which demonstrated excellent rectifying property, large MR, and photovoltaic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jonker G H, Van Santen J H. Ferromagnetic compounds of manganese with perovskite structure. Physica, 1950, 16: 337–349

    Article  ADS  Google Scholar 

  2. Zener C. Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Phys Rev, 1951, 82: 403–405

    Article  ADS  Google Scholar 

  3. Anderson P W, Hasegawa H. Consideration on double exchange. Phys Rev, 1955, 100: 675–681

    Article  ADS  Google Scholar 

  4. De Gennes P G. Effects of double exchange in magnetic crystals. Phys Rev, 1960, 118: 141–154

    Article  ADS  Google Scholar 

  5. Von Helmolt R, Wecker J, Holzapfeil B, et al. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys Rev Lett, 1993, 71: 2331–2333

    Article  ADS  Google Scholar 

  6. Chahara K, Ohno T, Kasai M, et al. Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure. Appl Phys Lett, 1993, 63: 1990–1992

    Article  ADS  Google Scholar 

  7. Haghiri-Gosnet A M, Renard J P. CMR manganite: Physics, thin films and devices. J Phys D Appl Phys, 2003, 36: R127–R150

    Article  ADS  Google Scholar 

  8. Salamon M B, Jaime M. The physics of manganites: structure and transport. Rev Mod Phys, 2001, 73: 583–628

    Article  ADS  Google Scholar 

  9. Balevicius S, Zurauskiene N, Stankevic V, et al. Nanostructured thin manganite films in magagauss magnetic field. Appl Phys Lett, 2012, 101: 092407

    Article  ADS  Google Scholar 

  10. Phan M H, Yu S C. Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater, 2007, 308: 325–340

    Article  ADS  Google Scholar 

  11. Jiang S P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J Mater Sci, 2008, 43: 6799–6833

    Article  ADS  Google Scholar 

  12. Imada M, Fujimori A, Tokura Y. Metal-insulator transitions. Rev Mod Phys, 1998, 70: 1039v1263

    Article  Google Scholar 

  13. Jahn H A, Teller E. Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy. Proc R Soc London Ser A, 1937, 161: 220–2351

    Article  ADS  Google Scholar 

  14. Rao C N R, Arulraj A, Cheetham A K, et al. Charge ordering in the rare earth manganates: the experimental situation. J Phys Condens Matter, 2000, 12: R83–R106

    Article  ADS  Google Scholar 

  15. Dagotto E, Hotta T, Moreo A. Colossal magnetoresistant materials: the key role of phase separation. Phys Rep, 2001, 344: 1v153

    Article  Google Scholar 

  16. Wang K F, Liu J M, Ren Z F. Multiferroicity: the coupling between magnetic and polarization orders. Adv Phys, 2009, 58: 321–448

    Article  ADS  Google Scholar 

  17. Katsu H, Tanaka H, Kawai T. Photocarrier injection effect on double exchange ferromagnetism in (La,Sr)MnO3/SrTiO3 heterostructure. Appl Phys Lett, 2000, 76: 3245–3247

    Article  ADS  Google Scholar 

  18. Sun J R, Xiong C M, Shen B G, et al. Manganite-based heterojunction and its photovoltaic effects. Appl Phys Lett, 2004, 84: 2611–2613

    Article  ADS  Google Scholar 

  19. Ramirez A P. Colossal magnetoresistance. J Phys Condens Matter, 1999, 9: 8171–8199

    Article  ADS  Google Scholar 

  20. Coey J M D, Viret M, Von Molnar S. Mixed-valence manganites. Adv Phys, 1999, 48: 167v293

    Article  Google Scholar 

  21. Tokura Y, Tomioka Y. Colossal magnetoresistive manganites. J Magn Magn Mater, 1999, 200: 1–23

    Article  ADS  Google Scholar 

  22. Gor’kov L P, Kresin V Z. Mixed-valence manganites: fundamental and main properties. Phys Rep, 2004, 400: 149v208

    Google Scholar 

  23. Tokura Y, Critical features of colossal magnetoresistive manganites. Rep Prog Phys, 2006, 69: 797–851

    Article  ADS  Google Scholar 

  24. Mira J, Rivas J, Hueso L E, et al. Strong reduction of lattice effects in mixed-valence manganites related to crystal symmetry. Phys Rev B, 2001, 65: 024418

    Article  ADS  Google Scholar 

  25. Kajimoto R, Yoshizawa H, Tomioka Y, et al. Stripe-type charge ordering in the metallic A-type antiferromagnet Pr0.5Sr0.5MnO3. Phys Rev B, 2002, 66: 180402

    Article  ADS  Google Scholar 

  26. Tobe K, Kimura T, Tokura Y. Anisotropic optical spectra of doped manganites with pseudocubic perovskite structure. Phys Rev B, 2004, 69: 014407

    Article  ADS  Google Scholar 

  27. Mandal P, Das S. Transport properties of Ce-doped RMnO3 (R=La, Pr, and Nd) manganites. Phys Rev B, 1997, 56: 15073–15080

    Article  ADS  Google Scholar 

  28. Granado E, Ling C D, Neumeier J J, et al. Inhomogeneous magnetism in La-doped CaMnO3. II. Nanometric-scale spin clusters and long-range spin canting. Phys Rev B, 2003, 68: 134440

    Article  ADS  Google Scholar 

  29. Ling C D, Granado E, Neumeier J J, et al. Inhomogeneous magnetism in La-doped CaMnO3. I. Mesoscopic phase separation due to lattice-coupled ferromagnetic interactions. Phys Rev B, 2003, 68: 134439

    Article  ADS  Google Scholar 

  30. Pissas M, Kallias G, Hofmann M, et al. Crystal and magnetic structure of the La1−x CaxMnO3 compound (x=0.8,n0.85). Phys Rev B, 2002, 65: 064413

    Article  ADS  Google Scholar 

  31. Wang Y, Fan H J. Magnetic phase diagram and critical behavior of electron-doped LaxCa1−x MnO3 (0 ⩽x⩽0.25) nanoparticles. Phys Rev B, 2011, 83: 224409

    Article  ADS  Google Scholar 

  32. Cheong S W, Colossal Magnetoresistance Oxides. Tokura Y, ed. London: Gordon & Breach, 1999

    Google Scholar 

  33. Santhosh P N, Goldberger J, Woodward P M, et al. Phase separation over an extended compositional range: Studies of the Ca1−x BixMnO3 (x<∼0.25) phase diagram. Phys Rev B, 2000, 62: 14928

    Article  ADS  Google Scholar 

  34. J. Blasco, C. Ritter, J. Garcıia, et al. Structural and magnetic study of Tb1−x CaxMnO3 perovskites. Phys Rev B, 2000, 62: 5609–5618

    Article  ADS  Google Scholar 

  35. Mandal P, Hassen A, Loidl A. Effect of Ce doping on structural, magnetic, and transport properties of SrMnO3 perovskite. Phys Rev B, 2004, 69: 224418

    Article  ADS  Google Scholar 

  36. Lu W J, Zhao B C, Ang R, et al. Studies of electrical and thermal transport properties of the electron-doped manganite Sr0.9Ce0.1MnO3. Phys B, 2005, 367: 243–248

    Article  ADS  Google Scholar 

  37. Lu W J, Zhao B C, Ang R, et al. Internal friction evidence of uncorrelated magnetic clusters in electron-doped manganite Sr0.8Ce0.2MnO3. Phys Lett A, 2005, 346: 321–326

    Article  ADS  Google Scholar 

  38. Zeng Z, Greenblatt M, Croft M. Charge ordering and magnetoresistance of Ca1−x CexMnO3. Phys Rev B, 2001, 63: 224410

    Article  ADS  Google Scholar 

  39. Caspi E N, Avdeev M, Short S, et al. Structural and magnetic phase diagram of the two-electron-doped (Ca1−x Cex)MnO3 system: Effects of competition among charge, orbital, and spin ordering. Phys Rev B, 2004, 69: 104402

    Article  ADS  Google Scholar 

  40. Gebhardt J R, Roy S, Ali N. Colossal magnetoresistance in Ce doped manganese oxides. J Appl Phys, 1999, 85: 5390–5392

    Article  ADS  Google Scholar 

  41. Raychaudhuri P, Mukherjee S, Nigam A K, et al. Transport and magnetic properties of laser ablated La0.7Ce0.3MnO3 films on LaAlO3. J Appl Phys, 1999, 86: 5718–5725

    Article  ADS  Google Scholar 

  42. Raychaudhuri P, Mitra C, Mann P D A, et al. Phase diagram and Hall effect of the electron doped manganite La1−xCexMnO3. J Appl Phys, 2003, 93: 8328–8330

    Article  ADS  Google Scholar 

  43. Mitra C, Hu Z, Raychaudhuri P, et al. Direct observation of electron doping in La0.7Ce0.3MnO3 using x-ray absorption spectroscopy. Phys Rev B, 2003, 67: 092404

    Article  ADS  Google Scholar 

  44. Mitra C, Raychaudhuri P, Doerr K, et al. Observation of minority spin character of the new electron doped manganite La0.7Ce0.3MnO3 from tunneling magnetoresistance. Phys Rev Lett, 2003, 90: 017202

    Article  ADS  Google Scholar 

  45. Tan G T, Dai S Y, Duan P, et al. Structural, electric and magnetic properties of the electron-doped manganese oxide: La1−x TexMnO3 (x=0.1, 0.15). J Appl Phys, 2003, 93: 5480–5483

    Article  ADS  Google Scholar 

  46. Tan G T, Duan P, Dai S Y, et al. Structural magnetic properties and spin-glass behavior in La0.9Te0.1MnO3. J Appl Phys, 2003, 93: 9920–9923

    Article  ADS  Google Scholar 

  47. Tan G T, Dai S Y, Duan P, et al. Colossal magnetoresistance behavior and ESR studies of La1−x TexMnO3 (0.04 ⩽x0.20). Phys Rev B, 2003, 68: 014426

    Article  ADS  Google Scholar 

  48. Tan G T, Zhang X, Chen Z H. Colossal magnetoresistance effect of electron-doped manganese oxide thin film La1−x TexMnO3 (x=0.1, 0.15). J Appl Phys, 2004, 95: 6322–6324

    Article  ADS  Google Scholar 

  49. Yang J, Sun Y P, Song W H, et al. Thermopower and thermal conductivity of the electron-doped manganite La0.9Te0.1MnO3. J Appl Phys, 2006, 100: 123701

    Article  ADS  Google Scholar 

  50. Yang J, Song W H, Ma Y Q, et al. Insulator-metal transition and the magnetic phase diagram of La0.9Te0.1MnO3 (0 ⩽ x ⩽ 0.60). Mater Chem Phys, 2005, 94: 62–68

    Article  Google Scholar 

  51. Yang J, Song W H, Ma Y Q, et al. Structural, magnetic and transport properties of the Cu-doped manganites La0.85Te0.15Mn1−xCuxO3 (0 ⩽ x ⩽ 0.20). Phys Rev B, 2004, 70: 092504

    Article  ADS  Google Scholar 

  52. Yang J, Song W H, Ma Y Q, et al. Structural, magnetic and transport properties in the Pr-doped manganites La0.9−x PrxTe0.1MnO3 (0 ⩽ x ⩽ 0.9). Phys Rev B, 2004, 70: 144421

    Article  ADS  Google Scholar 

  53. Yang J, Song W H, Zhang R L, et al. The effect of oxygen stoichiometry on electrical transport and magnetic properties of La0.9Te0.1-MnOy. Solid State Commun, 2004, 131: 393–398

    Article  ADS  Google Scholar 

  54. Yang J, Zhao B C, Zhang R L, et al. The effect of grain size on electrical transport and magnetic properties of La0.9Te0.1MnO3. Solid State Commun, 2004, 132: 83–87

    Article  ADS  Google Scholar 

  55. Yang J, Lee Y P, Li Y. Magnetocaloric effect of electron-doped manganite La0.9Te0.1MnO3. J Appl Phys, 2007, 102: 033913

    Article  ADS  Google Scholar 

  56. Yang J, Lee Y P, Li Y. Critical behavior of electron-doped manganite La0.9Te0.1MnO3. Phys Rev B, 2007, 76: 054442

    Article  ADS  Google Scholar 

  57. Yang J, Rong X, Suter D et al. Electron paramagnetic resonance investigation of the electron-doped manganite La1−x TexMnO3 (0.1 ⩽ x ⩽ 0.2). Phys Chem Chem Phys 2011, 13: 16343–16348

    Article  Google Scholar 

  58. Roy S, Ali N. Charge transport and colossal magnetoresistance phenomenon in La1−x ZrxMnO3. J Appl Phys, 2001, 89: 7425–7427

    Article  ADS  Google Scholar 

  59. Duan P, Tan G T, Dai S Y, et al. Colossal magnetoresistance effect of the electron-doped manganese oxide La1−x SbxMnO3 (x = 0.05, 0.1). J Phys Condens Matter, 2003, 15: 4469–4476

    Article  ADS  Google Scholar 

  60. Guo E J, Wang L, Wu Z P, et al. Phase diagram and spin-glass phenomena in electron-doped La1−x HfxMnO3 (0.05 ⩽ x ⩽ 0.3) manganite oxides. J Appl Phys, 2011, 110: 113914

    Article  ADS  Google Scholar 

  61. Gor’kov L P, Sokol A V. Phase stratification of an electron liquid in the new superconductors. JETP Lett, 1987, 46: 420–423

    ADS  Google Scholar 

  62. Uehara M, Mori S, Chen C H, et al. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature, 1999, 399: 560–563

    Article  ADS  Google Scholar 

  63. Fäth M, Freisem S, Menovsky A, et al. Spatially inhomogeneous metal-insulator transition in doped manganites. Science, 1999, 285: 1540–1543

    Article  Google Scholar 

  64. Zhang L W, Israel C, Biswas A, et al. Direct observation of percolation in a manganite thin film. Science, 2002, 298: 805–807

    Article  ADS  Google Scholar 

  65. Tao J, Niebieskikwiat D, Varela M, et al. Direct Imaging of Nanoscale Phase Separation in La0.55Ca0.45MnO3: Relationship to Colossal Magnetoresistance. Phys Rev Lett, 2009, 103: 097202

    Article  ADS  Google Scholar 

  66. Lanzara A, Saini N L, Brunelli M, et al. Crossover from Large to Small Polarons across the Metal-Insulator Transition in Manganites. Phys Rev Lett, 1998, 81: 878–881

    Article  ADS  Google Scholar 

  67. Dai P, Fernandez-Baca J A, Wakabayashi N, et al. Short-Range Polaron Correlations in the Ferromagnetic La1−x CaxMnO3. Phys Rev Lett, 2000, 85: 2553–2556

    Article  ADS  Google Scholar 

  68. Yoon S, Liu H L, Schollerer G, et al. Raman and optical spectroscopic studies of small-to-large polaron crossover in the perovskite manganese oxides. Phys Rev B, 1998, 58: 2795–2801

    Article  ADS  Google Scholar 

  69. Chechersky V, Nath A, Michel C, et al. Emission Mössbauer study of the electronic phases in La0.7Ca0.3MnO3. Phys Rev B, 2000, 62: 5316–5319

    Article  ADS  Google Scholar 

  70. Deisenhofer J, Braak D, Nidda H A K, et al. Observation of a Griffiths phase in paramagnetic La1−x SrxMnO3. Phys Rev Lett, 2005, 95: 257202

    Article  ADS  Google Scholar 

  71. Papavassiliou G, Fardis M, Belesi M, et al. Mn NMR Investigation of Electronic Phase Separation in La1−x CaxMnO3 for 0.2 ⩽ x ⩽ 0.5. Phys Rev Lett, 2000, 84: 761–764

    Article  ADS  Google Scholar 

  72. Heffner R H, Le L P, Hundley M F, et al. Ferromagnetic ordering and unusual magnetic ion dynamics in La0.67Ca0.33MnO3. Phys Rev Lett, 1996, 77: 1869–1872

    Article  ADS  Google Scholar 

  73. Ma Y Q, Song W H, Zhang R L, et al. Internal friction evidence of the intrinsic inhomogeneity in La0.67Ca0.33MnO3 at low temperatures. Phys Rev B, 2004, 69: 134404

    Article  ADS  Google Scholar 

  74. Lu W J, Sun Y P, Zhao B C, et al. Inhomogeneous strain and phase coexistence in Bi0.4Ca0.6MnO3. Phys Rev B, 2006, 73: 214409

    Article  ADS  Google Scholar 

  75. Sheng Z G, Makmura M, Kagawa F, et al. Dynamics of multiple phases in a colossal-magnetoresistive manganites as revealed by dielectric spectroscopy. Nat Commn, 2012, 3: 944

    Article  Google Scholar 

  76. Mickel P R, Biswas A, Hebard A. Competing soft dielectric phases and detailed balance in thin film manganites. Phys Rev B, 2012, 86: 094410

    Article  ADS  Google Scholar 

  77. Katsu H, Tanaka H, Kawai T. Photocarrier injection effect on double exchange ferromagnetism in (La,Sr)MnO3/SrTiO3 heterostructure. Appl Phys Lett 2000, 76: 3245–3247

    Article  ADS  Google Scholar 

  78. Tanaka H, Zhang J, Kawai T. Giant Electric Field Modulation of Double Exchange Ferromagnetism at Room Temperature in the Perovskite Manganite/Titanate p-n Junction. Phys Rev Lett, 2002, 88: 027204

    Article  ADS  Google Scholar 

  79. Muramatsu T, Muraoka Y, Hiroi Z. Photocarrier injection and the I–V characteristics of La0.8Sr0.2MnO3/SrTiO3:Nb heterojunctions. Solid State Commn, 2004, 132: 351–354

    Article  ADS  Google Scholar 

  80. Sun J R, Xiong C M, Shen B G. Large magnetoresistance effects near room temperature in manganite heterojunction. Appl Phys Lett, 2004, 85: 4977–4999

    Article  ADS  Google Scholar 

  81. Sun J R, Li C M, Wong H K. Strong magnetic-field effects in weak manganite-based heterojucntion. Appl Phys Lett, 2004, 84: 4804–4806

    Article  ADS  Google Scholar 

  82. Sun J R, Lai C H, Wong H K. Photovoltaic effect in La0.7Ce0.3Mn-O3-d/SrTiO3-Nb heterojunction and its oxygen content dependence. Appl Phys Lett, 2004, 85: 37–39

    Article  ADS  Google Scholar 

  83. Sun J R, Zhang S Y, Shen B G, et al. Rectifying and photovoltaic properties of the heterojunction composed of CaMnO3 and Nb-doped SrTiO3. Appl Phys Lett, 2005, 86: 053503

    Article  ADS  Google Scholar 

  84. Sun J R, Shen B G, Sheng Z G, et al. Temperature-dependent photovoltaic effect in the manganite-based heteojunction. Appl Phys Lett, 2004, 85: 16–18

    Article  ADS  Google Scholar 

  85. Sheng Z G, Zhao B C, Song W H, et al. Change in photovoltage due to an external magnetic field in a manganite-based heterojunction. Appl Phys Lett, 2005, 87: 242501

    Article  ADS  Google Scholar 

  86. Sheng Z G, Song W H, Sun Y P, et al. Crossover from negative to positive magnetoresistance in La0.7Ce0.3MnO3/SrTiO3:Nb heterojunctions. Appl Phys Lett, 2005, 87: 032501

    Article  ADS  Google Scholar 

  87. Zhao K, He M, Lu H B. Low-field positive magnetoresistance near room temperature in three-component perovskite-type artificial superlattices. Appl Phys Lett, 2007, 91: 152507

    Article  ADS  Google Scholar 

  88. Liu H, Zhao K, Zhou N, et al. Photovoltaic effect in micrometer-thick perovskite-type oxide multilayers on Si substrates. Appl Phys Lett, 2008, 93: 171911

    Article  ADS  Google Scholar 

  89. Ni H, Yue Z, Zhao K, et al. Magnetical and electrical tuning of transient photovoltaic effects in manganite-based heterojunctions. Opt Exp, 2012, 20: 406–411

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuPing Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Sun, Y. Study of doping effect, phase separation and heterojunction in CMR manganites. Sci. China Phys. Mech. Astron. 56, 85–98 (2013). https://doi.org/10.1007/s11433-012-4964-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4964-6

Keywords

Navigation