Three-dimensional topological insulators: A review on host materials

Abstract

In recent years, three-dimensional topological insulators (3DTI) as a novel state of quantum matter have become a hot topic in the fields of condensed matter physics and materials sciences. To fulfill many spectacularly novel quantum phenomena predicted in 3DTI, real host materials are of crucial importance. In this review paper, we first introduce general methods of searching for new 3DTI based on the density-functional theory. Then, we review the recent progress on materials realization of 3DTI including simple elements, binary compounds, ternary compounds, and quaternary compounds. In these potential host materials, some of them have already been confirmed by experiments while the others are not yet. The 3DTI discussed here does not contain the materials with strong electron-electron correlation. Lastly, we give a brief summary and some outlooks in further studies.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Wen X G. Topological orders and edge excitations in fractional quantum Hall states. Adv Phys, 1995, 44: 405–473

    ADS  Article  Google Scholar 

  2. 2

    Thouless D J, Kohmoto M, Nightingale M P, et al. Quantized hall conductance in a two-dimensional periodic potential. Phys Rev Lett, 1982, 49: 405–408

    ADS  Article  Google Scholar 

  3. 3

    Klitzing K V, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys Rev Lett, 1980, 45: 494–497

    ADS  Article  Google Scholar 

  4. 4

    Bernevig B A, Zhang S C. Quantum spin Hall effect. Phys Rev Lett, 2006, 96: 106802

    ADS  Article  Google Scholar 

  5. 5

    Kane C L, Mele E J. A new spin on the insulating state. Science, 2006, 314: 1692–1693

    Article  Google Scholar 

  6. 6

    Kane C L, Mele E J. Quantum spin Hall effect in graphene. Phys Rev Lett, 2005, 95: 226801

    ADS  Article  Google Scholar 

  7. 7

    Kane C L, Mele E J. Z2 topological order and the quantum spin Hall effect. Phys Rev Lett, 2005, 95: 146802

    ADS  Article  Google Scholar 

  8. 8

    Kohn W. Theory of the insulating state. Phys Rev, 1964, 133: A171–A181

    MathSciNet  ADS  Article  Google Scholar 

  9. 9

    Yao Y G, Ye F, Qi X L, et al. Spin-orbit gap of graphene: First-principles calculations. Phys Rev B, 2007, 75: 041401

    ADS  Article  Google Scholar 

  10. 10

    Huertas-Hernando D, Guinea F, Brataas A. Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys Rev B, 2006, 74: 155426

    ADS  Article  Google Scholar 

  11. 11

    Min H, Hill J E, Sinitsyn N A, et al. Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys Rev B, 2006, 74: 165310

    ADS  Article  Google Scholar 

  12. 12

    Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314: 1757–1761

    ADS  Article  Google Scholar 

  13. 13

    König M, Wiedmann S, Brüne C, et al. Q Quantum spin Hall insulator state in HgTe quantum wells.Science, 2006, 318: 766–77

    Article  Google Scholar 

  14. 14

    Fu L, Kane C L, Mele E J. Topological insulators in three dimensions. Phys Rev Lett, 2007, 98: 106803

    ADS  Article  Google Scholar 

  15. 15

    Moore J E, Balents L. Topological invariants of time-reversal-invariant band structures. Phys Rev B, 2007, 75: 121306

    ADS  Article  Google Scholar 

  16. 16

    Roy R. Topological phases and the quantum spin Hall effect in three dimensions. Phys Rev B, 2009, 79: 195322

    ADS  Article  Google Scholar 

  17. 17

    Fu L, Kane C L. Topological insulators with inversion symmetry. Phys Rev B, 2007, 76: 045302

    ADS  Article  Google Scholar 

  18. 18

    Qi X L, Zhang S C. Topological insulators and superconductors. Rev Mod Phys, 2011, 83: 1057–1110

    ADS  Article  Google Scholar 

  19. 19

    Qi X L, Zhang S C. The quantum spin Hall effect and topological insulators. Physics Today, 2010, 63: 33–38

    ADS  Article  Google Scholar 

  20. 20

    Hasan M Z, Kane C L. Colloquium: Topological insulators. Rev Mod Phys, 2010, 82: 3045–3067

    ADS  Article  Google Scholar 

  21. 21

    Hasan M Z, Moore J E. Three-dimensional topological insulators. Ann Rev Cond Matter Phys, 2011, 2: 55–78

    ADS  Article  Google Scholar 

  22. 22

    Moore J E. The birth of topological insulators. Nature, 2010, 464: 194–198

    ADS  Article  Google Scholar 

  23. 23

    Brumfiel G, Topological insulators: Star material. Nature, 2010, 466: 310–311

    Article  Google Scholar 

  24. 24

    DiVincenzo D P, Mele E J. Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys Rev B, 1984, 29: 1685–1694

    ADS  Article  Google Scholar 

  25. 25

    Semenoff G W. Condensed-matter simulation of a three-dimensional anomaly. Phys Rev Lett, 1984, 53: 2449–2452

    MathSciNet  ADS  Article  Google Scholar 

  26. 26

    Appelbaum Joel A, Hamann D R. The electronic structure of solid surfaces. Rev Mod Phys, 1976, 48: 479–496

    ADS  Article  Google Scholar 

  27. 27

    Hoffmann R. A chemical and theoretical way to look at bonding on surfaces. Rev Mod Phys, 1988, 60: 601–628

    ADS  Article  Google Scholar 

  28. 28

    Hoffmann R. Solids and surfaces: a chemist’s view of bonding in extended structures. New York: VCH Publishers, 1988

    Google Scholar 

  29. 29

    Liu C C, Feng W X, Yao Y G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett, 2011, 107: 076802

    ADS  Article  Google Scholar 

  30. 30

    Teo J C Y, Fu L, Kane C L. Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−x Sbx. Phys Rev B, 2008, 78: 045426

    ADS  Article  Google Scholar 

  31. 31

    Zhang H J, Liu C X, Qi X L, et al. Electronic structures and surface states of the topological insulator Bi1−x Sbx. Phys Rev B, 2009, 80: 085307

    ADS  Article  Google Scholar 

  32. 32

    Delin A, Klüner T. Excitation spectra and ground-state properties from density-functional theory for the inverted band-structure systems β-HgS, HgSe, and HgTe. Phys Rev B, 2002, 66: 035117

    ADS  Article  Google Scholar 

  33. 33

    Xiao D, Yao Y G, Feng W X, et al. Half-Heusler compounds as a new class of three-dimensional topological insulators. Phys Rev Lett, 2010, 105: 096404

    ADS  Article  Google Scholar 

  34. 34

    Feng W X, Xiao D, Zhang Y, et al. Half-Heusler topological insulators: A first-principles study with the Tran-Blaha modified Becke-Johnson density functional. Phys Rev B, 2010, 82: 235121

    ADS  Article  Google Scholar 

  35. 35

    Zhang H J, Liu C X, Qi X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys, 2009, 5: 438–442

    Article  Google Scholar 

  36. 36

    Zhang X, Zhang H J, Wang J, et al. Actinide topological insulator materials with strong interaction. Science, 2012, 335: 1464–1466

    ADS  Article  Google Scholar 

  37. 37

    Fukui T, Hatsugai Y. Quantum spin Hall effect in three dimensional materials: Lattice computation of Z 2 topological invariants and its application to Bi and Sb. J Phys Soc Jpn, 2007, 76: 053702

    ADS  Article  Google Scholar 

  38. 38

    Feng WX, Wen J, Zhou J J, et al. First-principles calculation of Z 2 topological invariants within the FP-LAPW formalism. Comp Phys Comm, 2012, 183: 1849–1859

    ADS  Article  Google Scholar 

  39. 39

    Fu L, Kane C L. Time reversal polarization and a Z 2 adiabatic spin pump. Phys. Rev. B, 2006, 74: 195312

    ADS  Article  Google Scholar 

  40. 40

    King-Smith R D, Vanderbilt D. Theory of polarization of crystalline solids. Phys Rev B, 1993, 47: 1651–1654

    ADS  Article  Google Scholar 

  41. 41

    Resta R. Macroscopic polarization in crystalline dielectrics: The gemetric phase approach. Rev Mod Phys, 1994, 66: 899–915

    ADS  Article  Google Scholar 

  42. 42

    Feng W X, Xiao D, Ding J, et al. Three-dimensional topological insulators in I-III-VI2 and II-IV-V2 chalcopyrite semiconductors. Phys Rev Lett, 2011, 106: 016402

    ADS  Article  Google Scholar 

  43. 43

    Soluyanov A A, Vanderbilt D. Computing topological invariants without inversion symmetry. Phys Rev B, 2011, 83: 235401

    ADS  Article  Google Scholar 

  44. 44

    Yu R, Qi X L, Bernevig A, et al. Equivalent expression of Z 2 topological invariant for band insulators using the non-Abelian Berry connection. Phys Rev B, 2011, 84: 075119

    ADS  Article  Google Scholar 

  45. 45

    Singh D J. Planewaves, Pseudopotentials and the LAPW Method. Boston: Kluwer Academic, 1994

    Google Scholar 

  46. 46

    Tran F, Blaha P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett, 2009, 102: 226401

    ADS  Article  Google Scholar 

  47. 47

    Blaha P, Schwarz K, Madsen G, et al. Wien2k, an augmented plane wave plus local orbitals program for calculating crystal properties. Austria: Vienna University of Technology, Vienna, 2001

    Google Scholar 

  48. 48

    Groves S, Paul W. Band structure of gray tin. Phys Rev Lett, 1963, 11: 194–196

    ADS  Article  Google Scholar 

  49. 49

    Chelikowsky J R, Cohen M L. Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Phys Rev B, 1976, 14: 556–582

    ADS  Article  Google Scholar 

  50. 50

    Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    ADS  Article  Google Scholar 

  51. 51

    Hsieh D, Wray L, Qian D, et al. Direct observation of spin-polarized surface states in the parent compound of a topological insulator using spinand angle-resolved photoemission spectroscopy in a Mott-polarimetry mode. New J Phys, 2010, 12: 125001

    Article  Google Scholar 

  52. 52

    Hsieh D, Xia Y, Wray L, et al. Observation of unconventional quantum spin textures in topological insulators. Science, 2009, 323: 919–922

    ADS  Article  Google Scholar 

  53. 53

    Lerner L S, Cuff K F, Williams L R. Energy-band parameters and relative band-edge motions in the Bi-Sb alloy system near the semimetal ł semiconductor transition. Rev Mod Phys, 1968, 40: 770–775

    ADS  Article  Google Scholar 

  54. 54

    Liu Y, Allen R E. Electronic structure of the semimetals Bi and Sb. Phys Rev B, 1995, 52: 1566–1577

    ADS  Article  Google Scholar 

  55. 55

    Hsieh D, Qian D, Wray L, et al. A topological Dirac insulator in a quantum spin Hall phase. Nature, 2008, 452: 970–974

    ADS  Article  Google Scholar 

  56. 56

    Guo H, Sugawara K, Takayama A, et al. Evolution of surface states in Bi1−x Sbx alloys across the topological phase transition. Phys Rev B, 2011, 83: 201104

    ADS  Article  Google Scholar 

  57. 57

    Nishide A, Taskin A A, Takeichi Y, et al. Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator. Phys Rev B, 2010, 81: 041309

    ADS  Article  Google Scholar 

  58. 58

    Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat Phys, 2009, 5: 398–402

    Article  Google Scholar 

  59. 59

    Chen Y L, Analytis J G, Chu J H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science, 2009, 325: 178–180

    ADS  Article  Google Scholar 

  60. 60

    Hsieh D, Xia Y, Qian D, et al. Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys Rev Lett, 2009, 103: 146401

    ADS  Article  Google Scholar 

  61. 61

    Zhang T, Cheng P, Chen X, et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys Rev Lett, 2009, 103: 266803

    ADS  Article  Google Scholar 

  62. 62

    Chen Y L, Chu J H, Analytis J G, et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science, 2010, 329: 659–662

    ADS  Article  Google Scholar 

  63. 63

    Hsieh D, Xia Y, Qian D, et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature, 2009, 460: 1101–1105

    ADS  Article  Google Scholar 

  64. 64

    Kuroda K, Arita M, Miyamoto K, et al. Hexagonally deformed Fermi surface of the 3D topological insulator Bi2Se3. Phys Rev Lett, 2010, 105: 076802

    ADS  Article  Google Scholar 

  65. 65

    Zhang J L, Zhang S J, Weng H M, et al. Pressure-induced superconductivity in topological parent compound Bi2Te3. PNAS, 2011, 108: 24–28

    ADS  Article  Google Scholar 

  66. 66

    Zhang W, Yu R, Zhang H J, et al. First-principles studies of the threedimensional strong topological insulators Bi2Te3, Bi2 Se3 and Sb2Te3. New J Phys, 2010, 12: 065013

    Article  Google Scholar 

  67. 67

    Park K, Heremans J J, Scarola V W, et al. Robustness of topologically protected surface states in layering of Bi2Te3 thin films. Phys Rev Lett, 2010, 105: 186801

    ADS  Article  Google Scholar 

  68. 68

    Yu R, Zhang W, Zhang H J, et al. Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329: 61–64

    ADS  Article  Google Scholar 

  69. 69

    Liu C X, Qi X L, Zhang H J, et al. Model Hamiltonian for topological insulators. Phys Rev B, 2010, 82: 045122

    ADS  Article  Google Scholar 

  70. 70

    Liu C X, Zhang H J, Yan B H, et al. Oscillatory crossover from two-dimensional to three-dimensional topological insulators. Phys Rev B, 2010, 81: 041307

    ADS  Article  Google Scholar 

  71. 71

    Song J H, Jin H, Freeman A J. Interfacial Dirac cones from alternating topological invariant superlattice structures of Bi2Se3. Phys Rev Lett, 2010, 105: 096403

    ADS  Article  Google Scholar 

  72. 72

    Brüne C, Liu C X, Novik E G, et al. Quantum Hall effect from the topological surface states of strained bulk HgTe. Phys Rev Lett, 2011, 106: 126803

    ADS  Article  Google Scholar 

  73. 73

    Virot F, Hayn R, Richter M, et al. Metacinnabar (β-HgS): A strong 3D topological insulator with highly anisotropic surface states. Phys Rev Lett, 2011, 106: 236806

    ADS  Article  Google Scholar 

  74. 74

    Madelung O. Semiconductors: Data handbook. Berlin: Springer, 2004

    Book  Google Scholar 

  75. 75

    Feng W X, Zhu W G, Weitering H H, et al. Strain tuning of topological band order in cubic semiconductors. Phys Rev B, 2012, 85: 195114

    ADS  Article  Google Scholar 

  76. 76

    Zhang W, Yu R, Feng W X, et al. Topological aspect and quantum magnetoresistance of β-Ag2Te. Phys Rev Lett, 2011, 106: 156808

    ADS  Article  Google Scholar 

  77. 77

    Sun Y, Chen X Q, Franchini C, et al. Strain-driven onset of nontrivial topological insulating states in Zintl Sr2X compounds (X = Pb, Sn). Phys Rev B, 2011, 84: 165127

    ADS  Article  Google Scholar 

  78. 78

    Zhu Z Y, Cheng Y C, Schwingenschlögl U. Topological phase transition in layered GaS and GaSe. Phys Rev Lett, 2012, 108: 266805

    ADS  Article  Google Scholar 

  79. 79

    Wang Z, Sun Y, Chen X Q, et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys Rev B, 2012, 85: 195320

    ADS  Article  Google Scholar 

  80. 80

    Hor Y S, Richardella A, Roushan P, et al. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys Rev B, 2009, 79: 195208

    ADS  Article  Google Scholar 

  81. 81

    Checkelsky J G, Hor Y S, Liu MH, et al. Quantum interference in macroscopic crystals of nonmetallic Bi2Se3. Phys Rev Lett, 2009, 103: 246601

    ADS  Article  Google Scholar 

  82. 82

    Analytis J G, Chu J H, Chen Y L, et al. Bulk Fermi surface coexistence with Dirac surface state in Bi2Se3: A comparison of photoemission and Shubnikov-de Haas measurements. Phys Rev B, 2010, 81: 205407

    ADS  Article  Google Scholar 

  83. 83

    Chen J, Qin H J, Yang F, et al. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3. Phys Rev Lett, 2010, 105: 176602

    ADS  Article  Google Scholar 

  84. 84

    Chen J, He X Y, Wu K H, et al. Tunable surface conductivity in Bi2Se3 revealed in diffusive electron transport. Phys Rev B, 2011, 83: 241304

    ADS  Article  Google Scholar 

  85. 85

    Checkelsky J G, Hor Y S, Cava R J, et al. Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3. Phys Rev Lett, 2011, 106: 196801

    ADS  Article  Google Scholar 

  86. 86

    Ren Z, Taskin A A, Sasaki S, et al. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys Rev B, 2010, 82: 241306

    ADS  Article  Google Scholar 

  87. 87

    Xiong J, Petersen A C, Qu D X, et al. Quantum oscillations in a topological insulator Bi2Te2Se with large bulk resistivity (6 Ω cm). Physica E, 2012, 44: 917–920

    ADS  Article  Google Scholar 

  88. 88

    Lin H, Das T, Wray L A, et al. An isolated Dirac cone on the surface of ternary tetradymite-like topological insulators. New J Phys, 2011, 13: 095005

    Article  Google Scholar 

  89. 89

    Wang L L, Johnson D D. Ternary tetradymite compounds as topological insulators. Phys Rev B, 2011, 83: 241309

    ADS  Article  Google Scholar 

  90. 90

    Neupane M, Xu S Y, Wray L A, et al. Topological surface states and Dirac point tuning in ternary topological insulators. Phys Rev B, 2012, 85: 235406

    ADS  Article  Google Scholar 

  91. 91

    Ji H W, Allred J M, Fuccillo M K, et al. Bi2Te1.6S1.4: A topological insulator in the tetradymite family. Phys Rev B, 2012, 85: 201103

    ADS  Article  Google Scholar 

  92. 92

    Zhang J S, Chang C Z, Zhang Z C, et al. Band structure engineering in (Bi1−x Sbx)2Te3 ternary topological insulators. Nature Commun, 2011, 2: 574

    ADS  Article  Google Scholar 

  93. 93

    Kong D S, Chen Y L, Cha J J, et al. Ambipolar field effect in the ternary topological insulator (BixSb1−x )2Te3 by composition tuning. Nature Nanotech, 2011, 6: 705–709

    ADS  Article  Google Scholar 

  94. 94

    Arakane T, Sato T, Souma S, et al. Tunable Dirac cone in the topological insulator Bi2−x SbxTe3−y Sey. Nature Commun, 2012, 3: 636

    ADS  Article  Google Scholar 

  95. 95

    Ren Z, Taskin A A, Sasaki S, et al. Optimizing Bi2−x SbxTe3−y Sey solid solutions to approach the intrinsic topological insulator regime. Phys Rev B, 2011, 84: 165311

    ADS  Article  Google Scholar 

  96. 96

    Taskin A A, Ren Z, Sasaki S, et al. Observation of Dirac holes and electrons in a topological insulator. Phys Rev Lett, 2011, 107: 016801

    ADS  Article  Google Scholar 

  97. 97

    Chadov S, Qi X L, Kübler J, et al. Tunable multifunctional topological insulators in ternary Heusler compounds. Nature Mater, 2010, 9: 541–545

    ADS  Article  Google Scholar 

  98. 98

    Lin H, Wray L A, Xia Y, et al. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat Mater, 2010, 9: 546–549

    ADS  Article  Google Scholar 

  99. 99

    Al-Sawai W, Lin H, Markiewicz R S, et al. Topological electronic structure in half-Heusler topological insulators. Phys Rev B, 2010, 82: 125208

    ADS  Article  Google Scholar 

  100. 100

    Gofryk K, Kaczorowski D, Plackowski T, et al. Magnetic and transport properties of rare-earth-based half-Heusler phases RPdBi: Prospective systems for topological quantum phenomena. Phys Rev B, 2011, 84: 035208

    ADS  Article  Google Scholar 

  101. 101

    Liu C, Lee Y, Kondo T, et al. Metallic surface electronic state in half-Heusler compounds RPtBi (R = Lu, Dy, Gd). Phys Rev B, 2011, 83: 205133

    ADS  Article  Google Scholar 

  102. 102

    utch N P, Syers P, Kirshenbaum K, et al. Superconductivity in the topological semimetal YPtBi. Phys Rev B, 2011 84: 220504

    Article  Google Scholar 

  103. 103

    Shekhar C, Ouardi S, Fecher G H, et al. Electronic structure and linear magnetoresistance of the gapless topological insulator PtLuSb. Appl Phys Lett, 2012, 100: 252109

    ADS  Article  Google Scholar 

  104. 104

    Miyawaki T, Sugimoto N, Fukatani N, et al. Structural and electrical properties of half-Heusler La-Pt-Bi thin films grown by 3-source magnetron co-sputtering. J Appl Phys, 2012, 111: 07E327

    Article  Google Scholar 

  105. 105

    Canfield P C, Thompson J D, Beyermann W P, et al. Magnetism and heavy fermion-like behavior in the RBiPt series. J Appl Phys, 1991, 70: 5800–5802

    ADS  Article  Google Scholar 

  106. 106

    Goll G, Marz M, Hamann A, et al. Thermodynamic and transport properties of the non-centrosymmetric superconductor LaBiPt. Physica B, 2008, 403: 1065–1067

    ADS  Article  Google Scholar 

  107. 107

    Lin H, Wray L A, Xia Y, et al. Single-Dirac-cone Z 2 topological insulator phases in distorted Li2AgSb-class and related quantum critical Li-based spin-orbit compounds. arXiv:1004.0999

  108. 108

    Shay J L, Wernick J H. Ternary chalcopyrite semiconductors: Growth, electronic properties and applications. Oxford: Pergamon Press, 1975

    Google Scholar 

  109. 109

    Medvedkin G A, Ishibashi T, Nishi T, et al. Room temperature ferromagnetism in novel diluted magnetic semiconductor (Cd1−x Mnx)GeP2. Jpn J Appl Phys, 2000, 39: L949–L951

    ADS  Article  Google Scholar 

  110. 110

    Cho S, Choi S, Cha G B, et al. Room-temperature ferromagnetism in (Zn1−x Mnx)GeP2 semiconductors. Phys Rev Lett, 2002, 88: 257203

    ADS  Article  Google Scholar 

  111. 111

    Erwin S C, Žutić I. Tailoring ferromagnetic chalcopyrites. Nature Mater, 2004, 3: 410–414

    ADS  Article  Google Scholar 

  112. 112

    Lin H, Markiewicz R S, Wray L A, et al. Single-Dirac-cone topological surface states in the TlBiSe2 class of topological semiconductors. Phys Rev Lett, 2010, 105: 036404

    ADS  Article  Google Scholar 

  113. 113

    Yan B H, Liu C X, Zhang H J, et al. Theoretical prediction of topological insulators in thallium-based III-V-VI2 ternary chalcogenides. Europhys Lett, 2010, 90: 37002

    ADS  Article  Google Scholar 

  114. 114

    Eremeev S V, Bihlmayer G, Vergniory M, et al. Ab initio electronic structure of thallium-based topological insulators. Phys Rev B, 2011, 83: 205129

    ADS  Article  Google Scholar 

  115. 115

    Kuroda K, Ye M, Kimura A, et al. Experimental realization of a threedimensional topological insulator phase in ternary chalcogenide TlBiSe2. Phys Rev Lett, 2010, 105: 146801

    ADS  Article  Google Scholar 

  116. 116

    Sato T, Segawa K, Guo H, et al. Direct evidence for the Dirac-cone topological surface states in the ternary chalcogenide TlBiSe2. Phys Rev Lett, 2010, 105: 136802

    ADS  Article  Google Scholar 

  117. 117

    Xu S Y, Xia Y, Wray L A, et al. Topological phase transition and texture inversion in a tunable topological insulator. Science, 2011, 332: 560–564

    ADS  Article  Google Scholar 

  118. 118

    Chen Y L, Liu Z K, Analytis J G, et al. Single Dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family. Phys Rev Lett, 2010, 105: 266401

    ADS  Article  Google Scholar 

  119. 119

    Yan B H, Zhang H J, Liu C X, et al. Theoretical prediction of topological insulator in ternary rare earth chalcogenides. Phys Rev B, 2010, 82: 161108

    ADS  Article  Google Scholar 

  120. 120

    Yan B H, Műchler L, Qi X L, et al. Topological insulators in filled skutterudites. Phys Rev B, 2012, 85: 165125

    ADS  Article  Google Scholar 

  121. 121

    Sun Y, Chen X Q, Yunoki S, et al. New family of three-dimensional topological insulators with antiperovskite structure. Phys Rev Lett, 2010, 105: 216406

    ADS  Article  Google Scholar 

  122. 122

    Yang K, Setyawan W, Wang S D, et al. A search model for topological insulators with high-throughput robustness descriptors. Nat Mater, 2012, 11: 614–619

    ADS  Article  Google Scholar 

  123. 123

    Zhang H J, Chadov S, Müchler L, et al. Topological insulators in ternary compounds with a honeycomb lattice. Phys Rev Lett, 2011, 106: 156402

    ADS  Article  Google Scholar 

  124. 124

    Bahramy M S, Yang B J, Arita R, et al. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat Commun, 2012, 3: 679

    Article  Google Scholar 

  125. 125

    Kim J, Kim J, Jhi S H. Prediction of topological insulating behavior in crystalline Ge-Sb-Te. Phys Rev B, 2010, 82: 201312

    ADS  Article  Google Scholar 

  126. 126

    Sa B S, Zhou J, Song Z T, et al. Pressure-induced topological insulating behavior in the ternary chalcogenide Ge2Sb2Te5. Phys Rev B, 2011, 84: 085130

    ADS  Article  Google Scholar 

  127. 127

    Sa B, Zhou J, Sun Z, et al. Strain-induced topological insulating behavior in ternary chalcogenide Ge2Sb2Te5. Europhys Lett, 2011, 97: 27003

    ADS  Article  Google Scholar 

  128. 128

    Jin H, Song J H, Freeman A J, et al. Candidates for topological insulators: Pb-based chalcogenide series. Phys Rev B, 2011, 83: 041202

    ADS  Article  Google Scholar 

  129. 129

    Kuroda K, Miyahara H, Ye M, et al. Experimental verification of PbBi2Te4 as a 3D topological insulator. Phys Rev Lett, 2012, 108: 206803

    ADS  Article  Google Scholar 

  130. 130

    Souma S, Eto K, Nomura M, et al. Topological surface states in leadbased ternary telluride Pb(Bi1−x Sbx)2Te4. Phys Rev Lett, 2012, 108: 116801

    ADS  Article  Google Scholar 

  131. 131

    Eremeev S V, Landolt G, Menshchikova T V, et al. Atom-specific spin mapping and buried topological states in a homologous series of topological insulators. Nat Commun, 2012, 3: 635

    Article  Google Scholar 

  132. 132

    Xu S Y, Wray L A, Xia Y, et al. Discovery of several large families of topological insulator classes with backscattering-suppressed spinpolarized single-dirac-cone on the surface. arXiv:1007.5111

  133. 133

    Wang Y J, Lin H, Das T, et al. Topological insulators in the quaternary chalcogenide compounds and ternary famatinite compounds. New J Phys, 2011, 13: 085017

    Article  Google Scholar 

  134. 134

    Chen S Y, Gong X G, Duan C G, et al. Band structure engineering of multinary chalcogenide topological insulators. Phys Rev B, 2011, 83: 245202

    ADS  Article  Google Scholar 

  135. 135

    Raghu S, Qi X L, Honerkamp C, et al. Topological Mott insulators. Phys Rev Lett, 2008, 100: 156401

    ADS  Article  Google Scholar 

  136. 136

    Zhang Y, Ran Y, Vishwanath A. Topological insulators in three dimensions from spontaneous symmetry breaking. Phys Rev B, 2009, 79: 245331

    ADS  Article  Google Scholar 

  137. 137

    Dzero M, Sun K, Galitski V, et al. Topological Kondo insulators. Phys Rev Lett, 2010, 104: 106408

    ADS  Article  Google Scholar 

  138. 138

    Dzero M, Sun K, Coleman P, et al. Theory of topological Kondo insulators. Phys Rev B, 2012, 85: 045130

    ADS  Article  Google Scholar 

  139. 139

    Li J, Chu R L, Jain J K, et al. Topological Anderson insulator. Phys Rev Lett, 2009, 102: 136806

    ADS  Article  Google Scholar 

  140. 140

    Groth C W, Wimmer M, Akhmerov A R, et al. Theory of the topological Anderson insulator. Phys Rev Lett, 2009, 103: 196805

    ADS  Article  Google Scholar 

  141. 141

    Guo H M, Rosenberg G, Refael G, et al. Topological Anderson insulator in three dimensions. Phys Rev Lett, 2010, 105: 216601

    ADS  Article  Google Scholar 

  142. 142

    Haldane F D M. Model for a quantum Hall effect without landau levels: Condensed-matter realization of the “parity anomaly”. Phys Rev Lett, 1988, 61: 2015–2018

    MathSciNet  ADS  Article  Google Scholar 

  143. 143

    Liu C X, Qi X L, Dai X, et al. Quantum anomalous Hall effect in Hg1−y MnyTe quantum wells. Phys Rev Lett, 2008, 101: 146802

    ADS  Article  Google Scholar 

  144. 144

    Yu R, Zhang W, Zhang H J, et al. Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329: 61–64

    ADS  Article  Google Scholar 

  145. 145

    Qiao Z H, Yang S Y A, Feng WX, et al. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Phys Rev B, 2010, 82: 161414

    ADS  Article  Google Scholar 

  146. 146

    Ding J, Qiao Z H, Feng W X, et al. Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An abinitio study. Phys Rev B, 2011, 84: 195444

    ADS  Article  Google Scholar 

  147. 147

    Zhang H J, Zhang X, Zhang S C. Quantum anomalous hall effect in magnetic topological insulator GdBiTe3. arXiv:1108.4857

  148. 148

    Fu L, Kane C L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys Rev Lett, 2008, 100: 096407

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to YuGui Yao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feng, W., Yao, Y. Three-dimensional topological insulators: A review on host materials. Sci. China Phys. Mech. Astron. 55, 2199–2212 (2012). https://doi.org/10.1007/s11433-012-4929-9

Download citation

Keywords

  • three dimension
  • topological insulator
  • host material