Advertisement

Science China Physics, Mechanics and Astronomy

, Volume 55, Issue 12, pp 2199–2212 | Cite as

Three-dimensional topological insulators: A review on host materials

  • WanXiang Feng
  • YuGui Yao
Review Special Topic: Topological Insulators and Dirac Fermion

Abstract

In recent years, three-dimensional topological insulators (3DTI) as a novel state of quantum matter have become a hot topic in the fields of condensed matter physics and materials sciences. To fulfill many spectacularly novel quantum phenomena predicted in 3DTI, real host materials are of crucial importance. In this review paper, we first introduce general methods of searching for new 3DTI based on the density-functional theory. Then, we review the recent progress on materials realization of 3DTI including simple elements, binary compounds, ternary compounds, and quaternary compounds. In these potential host materials, some of them have already been confirmed by experiments while the others are not yet. The 3DTI discussed here does not contain the materials with strong electron-electron correlation. Lastly, we give a brief summary and some outlooks in further studies.

Keywords

three dimension topological insulator host material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wen X G. Topological orders and edge excitations in fractional quantum Hall states. Adv Phys, 1995, 44: 405–473ADSCrossRefGoogle Scholar
  2. 2.
    Thouless D J, Kohmoto M, Nightingale M P, et al. Quantized hall conductance in a two-dimensional periodic potential. Phys Rev Lett, 1982, 49: 405–408ADSCrossRefGoogle Scholar
  3. 3.
    Klitzing K V, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys Rev Lett, 1980, 45: 494–497ADSCrossRefGoogle Scholar
  4. 4.
    Bernevig B A, Zhang S C. Quantum spin Hall effect. Phys Rev Lett, 2006, 96: 106802ADSCrossRefGoogle Scholar
  5. 5.
    Kane C L, Mele E J. A new spin on the insulating state. Science, 2006, 314: 1692–1693CrossRefGoogle Scholar
  6. 6.
    Kane C L, Mele E J. Quantum spin Hall effect in graphene. Phys Rev Lett, 2005, 95: 226801ADSCrossRefGoogle Scholar
  7. 7.
    Kane C L, Mele E J. Z2 topological order and the quantum spin Hall effect. Phys Rev Lett, 2005, 95: 146802ADSCrossRefGoogle Scholar
  8. 8.
    Kohn W. Theory of the insulating state. Phys Rev, 1964, 133: A171–A181MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Yao Y G, Ye F, Qi X L, et al. Spin-orbit gap of graphene: First-principles calculations. Phys Rev B, 2007, 75: 041401ADSCrossRefGoogle Scholar
  10. 10.
    Huertas-Hernando D, Guinea F, Brataas A. Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys Rev B, 2006, 74: 155426ADSCrossRefGoogle Scholar
  11. 11.
    Min H, Hill J E, Sinitsyn N A, et al. Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys Rev B, 2006, 74: 165310ADSCrossRefGoogle Scholar
  12. 12.
    Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314: 1757–1761ADSCrossRefGoogle Scholar
  13. 13.
    König M, Wiedmann S, Brüne C, et al. Q Quantum spin Hall insulator state in HgTe quantum wells.Science, 2006, 318: 766–77CrossRefGoogle Scholar
  14. 14.
    Fu L, Kane C L, Mele E J. Topological insulators in three dimensions. Phys Rev Lett, 2007, 98: 106803ADSCrossRefGoogle Scholar
  15. 15.
    Moore J E, Balents L. Topological invariants of time-reversal-invariant band structures. Phys Rev B, 2007, 75: 121306ADSCrossRefGoogle Scholar
  16. 16.
    Roy R. Topological phases and the quantum spin Hall effect in three dimensions. Phys Rev B, 2009, 79: 195322ADSCrossRefGoogle Scholar
  17. 17.
    Fu L, Kane C L. Topological insulators with inversion symmetry. Phys Rev B, 2007, 76: 045302ADSCrossRefGoogle Scholar
  18. 18.
    Qi X L, Zhang S C. Topological insulators and superconductors. Rev Mod Phys, 2011, 83: 1057–1110ADSCrossRefGoogle Scholar
  19. 19.
    Qi X L, Zhang S C. The quantum spin Hall effect and topological insulators. Physics Today, 2010, 63: 33–38ADSCrossRefGoogle Scholar
  20. 20.
    Hasan M Z, Kane C L. Colloquium: Topological insulators. Rev Mod Phys, 2010, 82: 3045–3067ADSCrossRefGoogle Scholar
  21. 21.
    Hasan M Z, Moore J E. Three-dimensional topological insulators. Ann Rev Cond Matter Phys, 2011, 2: 55–78ADSCrossRefGoogle Scholar
  22. 22.
    Moore J E. The birth of topological insulators. Nature, 2010, 464: 194–198ADSCrossRefGoogle Scholar
  23. 23.
    Brumfiel G, Topological insulators: Star material. Nature, 2010, 466: 310–311CrossRefGoogle Scholar
  24. 24.
    DiVincenzo D P, Mele E J. Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys Rev B, 1984, 29: 1685–1694ADSCrossRefGoogle Scholar
  25. 25.
    Semenoff G W. Condensed-matter simulation of a three-dimensional anomaly. Phys Rev Lett, 1984, 53: 2449–2452MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Appelbaum Joel A, Hamann D R. The electronic structure of solid surfaces. Rev Mod Phys, 1976, 48: 479–496ADSCrossRefGoogle Scholar
  27. 27.
    Hoffmann R. A chemical and theoretical way to look at bonding on surfaces. Rev Mod Phys, 1988, 60: 601–628ADSCrossRefGoogle Scholar
  28. 28.
    Hoffmann R. Solids and surfaces: a chemist’s view of bonding in extended structures. New York: VCH Publishers, 1988Google Scholar
  29. 29.
    Liu C C, Feng W X, Yao Y G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett, 2011, 107: 076802ADSCrossRefGoogle Scholar
  30. 30.
    Teo J C Y, Fu L, Kane C L. Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−xSbx. Phys Rev B, 2008, 78: 045426ADSCrossRefGoogle Scholar
  31. 31.
    Zhang H J, Liu C X, Qi X L, et al. Electronic structures and surface states of the topological insulator Bi1−xSbx. Phys Rev B, 2009, 80: 085307ADSCrossRefGoogle Scholar
  32. 32.
    Delin A, Klüner T. Excitation spectra and ground-state properties from density-functional theory for the inverted band-structure systems β-HgS, HgSe, and HgTe. Phys Rev B, 2002, 66: 035117ADSCrossRefGoogle Scholar
  33. 33.
    Xiao D, Yao Y G, Feng W X, et al. Half-Heusler compounds as a new class of three-dimensional topological insulators. Phys Rev Lett, 2010, 105: 096404ADSCrossRefGoogle Scholar
  34. 34.
    Feng W X, Xiao D, Zhang Y, et al. Half-Heusler topological insulators: A first-principles study with the Tran-Blaha modified Becke-Johnson density functional. Phys Rev B, 2010, 82: 235121ADSCrossRefGoogle Scholar
  35. 35.
    Zhang H J, Liu C X, Qi X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys, 2009, 5: 438–442CrossRefGoogle Scholar
  36. 36.
    Zhang X, Zhang H J, Wang J, et al. Actinide topological insulator materials with strong interaction. Science, 2012, 335: 1464–1466ADSCrossRefGoogle Scholar
  37. 37.
    Fukui T, Hatsugai Y. Quantum spin Hall effect in three dimensional materials: Lattice computation of Z 2 topological invariants and its application to Bi and Sb. J Phys Soc Jpn, 2007, 76: 053702ADSCrossRefGoogle Scholar
  38. 38.
    Feng WX, Wen J, Zhou J J, et al. First-principles calculation of Z 2 topological invariants within the FP-LAPW formalism. Comp Phys Comm, 2012, 183: 1849–1859ADSCrossRefGoogle Scholar
  39. 39.
    Fu L, Kane C L. Time reversal polarization and a Z 2 adiabatic spin pump. Phys. Rev. B, 2006, 74: 195312ADSCrossRefGoogle Scholar
  40. 40.
    King-Smith R D, Vanderbilt D. Theory of polarization of crystalline solids. Phys Rev B, 1993, 47: 1651–1654ADSCrossRefGoogle Scholar
  41. 41.
    Resta R. Macroscopic polarization in crystalline dielectrics: The gemetric phase approach. Rev Mod Phys, 1994, 66: 899–915ADSCrossRefGoogle Scholar
  42. 42.
    Feng W X, Xiao D, Ding J, et al. Three-dimensional topological insulators in I-III-VI2 and II-IV-V2 chalcopyrite semiconductors. Phys Rev Lett, 2011, 106: 016402ADSCrossRefGoogle Scholar
  43. 43.
    Soluyanov A A, Vanderbilt D. Computing topological invariants without inversion symmetry. Phys Rev B, 2011, 83: 235401ADSCrossRefGoogle Scholar
  44. 44.
    Yu R, Qi X L, Bernevig A, et al. Equivalent expression of Z 2 topological invariant for band insulators using the non-Abelian Berry connection. Phys Rev B, 2011, 84: 075119ADSCrossRefGoogle Scholar
  45. 45.
    Singh D J. Planewaves, Pseudopotentials and the LAPW Method. Boston: Kluwer Academic, 1994Google Scholar
  46. 46.
    Tran F, Blaha P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett, 2009, 102: 226401ADSCrossRefGoogle Scholar
  47. 47.
    Blaha P, Schwarz K, Madsen G, et al. Wien2k, an augmented plane wave plus local orbitals program for calculating crystal properties. Austria: Vienna University of Technology, Vienna, 2001Google Scholar
  48. 48.
    Groves S, Paul W. Band structure of gray tin. Phys Rev Lett, 1963, 11: 194–196ADSCrossRefGoogle Scholar
  49. 49.
    Chelikowsky J R, Cohen M L. Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Phys Rev B, 1976, 14: 556–582ADSCrossRefGoogle Scholar
  50. 50.
    Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868ADSCrossRefGoogle Scholar
  51. 51.
    Hsieh D, Wray L, Qian D, et al. Direct observation of spin-polarized surface states in the parent compound of a topological insulator using spinand angle-resolved photoemission spectroscopy in a Mott-polarimetry mode. New J Phys, 2010, 12: 125001CrossRefGoogle Scholar
  52. 52.
    Hsieh D, Xia Y, Wray L, et al. Observation of unconventional quantum spin textures in topological insulators. Science, 2009, 323: 919–922ADSCrossRefGoogle Scholar
  53. 53.
    Lerner L S, Cuff K F, Williams L R. Energy-band parameters and relative band-edge motions in the Bi-Sb alloy system near the semimetal ł semiconductor transition. Rev Mod Phys, 1968, 40: 770–775ADSCrossRefGoogle Scholar
  54. 54.
    Liu Y, Allen R E. Electronic structure of the semimetals Bi and Sb. Phys Rev B, 1995, 52: 1566–1577ADSCrossRefGoogle Scholar
  55. 55.
    Hsieh D, Qian D, Wray L, et al. A topological Dirac insulator in a quantum spin Hall phase. Nature, 2008, 452: 970–974ADSCrossRefGoogle Scholar
  56. 56.
    Guo H, Sugawara K, Takayama A, et al. Evolution of surface states in Bi1−xSbx alloys across the topological phase transition. Phys Rev B, 2011, 83: 201104ADSCrossRefGoogle Scholar
  57. 57.
    Nishide A, Taskin A A, Takeichi Y, et al. Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator. Phys Rev B, 2010, 81: 041309ADSCrossRefGoogle Scholar
  58. 58.
    Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat Phys, 2009, 5: 398–402CrossRefGoogle Scholar
  59. 59.
    Chen Y L, Analytis J G, Chu J H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science, 2009, 325: 178–180ADSCrossRefGoogle Scholar
  60. 60.
    Hsieh D, Xia Y, Qian D, et al. Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys Rev Lett, 2009, 103: 146401ADSCrossRefGoogle Scholar
  61. 61.
    Zhang T, Cheng P, Chen X, et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys Rev Lett, 2009, 103: 266803ADSCrossRefGoogle Scholar
  62. 62.
    Chen Y L, Chu J H, Analytis J G, et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science, 2010, 329: 659–662ADSCrossRefGoogle Scholar
  63. 63.
    Hsieh D, Xia Y, Qian D, et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature, 2009, 460: 1101–1105ADSCrossRefGoogle Scholar
  64. 64.
    Kuroda K, Arita M, Miyamoto K, et al. Hexagonally deformed Fermi surface of the 3D topological insulator Bi2Se3. Phys Rev Lett, 2010, 105: 076802ADSCrossRefGoogle Scholar
  65. 65.
    Zhang J L, Zhang S J, Weng H M, et al. Pressure-induced superconductivity in topological parent compound Bi2Te3. PNAS, 2011, 108: 24–28ADSCrossRefGoogle Scholar
  66. 66.
    Zhang W, Yu R, Zhang H J, et al. First-principles studies of the threedimensional strong topological insulators Bi2Te3, Bi2 Se3 and Sb2Te3. New J Phys, 2010, 12: 065013CrossRefGoogle Scholar
  67. 67.
    Park K, Heremans J J, Scarola V W, et al. Robustness of topologically protected surface states in layering of Bi2Te3 thin films. Phys Rev Lett, 2010, 105: 186801ADSCrossRefGoogle Scholar
  68. 68.
    Yu R, Zhang W, Zhang H J, et al. Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329: 61–64ADSCrossRefGoogle Scholar
  69. 69.
    Liu C X, Qi X L, Zhang H J, et al. Model Hamiltonian for topological insulators. Phys Rev B, 2010, 82: 045122ADSCrossRefGoogle Scholar
  70. 70.
    Liu C X, Zhang H J, Yan B H, et al. Oscillatory crossover from two-dimensional to three-dimensional topological insulators. Phys Rev B, 2010, 81: 041307ADSCrossRefGoogle Scholar
  71. 71.
    Song J H, Jin H, Freeman A J. Interfacial Dirac cones from alternating topological invariant superlattice structures of Bi2Se3. Phys Rev Lett, 2010, 105: 096403ADSCrossRefGoogle Scholar
  72. 72.
    Brüne C, Liu C X, Novik E G, et al. Quantum Hall effect from the topological surface states of strained bulk HgTe. Phys Rev Lett, 2011, 106: 126803ADSCrossRefGoogle Scholar
  73. 73.
    Virot F, Hayn R, Richter M, et al. Metacinnabar (β-HgS): A strong 3D topological insulator with highly anisotropic surface states. Phys Rev Lett, 2011, 106: 236806ADSCrossRefGoogle Scholar
  74. 74.
    Madelung O. Semiconductors: Data handbook. Berlin: Springer, 2004CrossRefGoogle Scholar
  75. 75.
    Feng W X, Zhu W G, Weitering H H, et al. Strain tuning of topological band order in cubic semiconductors. Phys Rev B, 2012, 85: 195114ADSCrossRefGoogle Scholar
  76. 76.
    Zhang W, Yu R, Feng W X, et al. Topological aspect and quantum magnetoresistance of β-Ag2Te. Phys Rev Lett, 2011, 106: 156808ADSCrossRefGoogle Scholar
  77. 77.
    Sun Y, Chen X Q, Franchini C, et al. Strain-driven onset of nontrivial topological insulating states in Zintl Sr2X compounds (X = Pb, Sn). Phys Rev B, 2011, 84: 165127ADSCrossRefGoogle Scholar
  78. 78.
    Zhu Z Y, Cheng Y C, Schwingenschlögl U. Topological phase transition in layered GaS and GaSe. Phys Rev Lett, 2012, 108: 266805ADSCrossRefGoogle Scholar
  79. 79.
    Wang Z, Sun Y, Chen X Q, et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys Rev B, 2012, 85: 195320ADSCrossRefGoogle Scholar
  80. 80.
    Hor Y S, Richardella A, Roushan P, et al. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys Rev B, 2009, 79: 195208ADSCrossRefGoogle Scholar
  81. 81.
    Checkelsky J G, Hor Y S, Liu MH, et al. Quantum interference in macroscopic crystals of nonmetallic Bi2Se3. Phys Rev Lett, 2009, 103: 246601ADSCrossRefGoogle Scholar
  82. 82.
    Analytis J G, Chu J H, Chen Y L, et al. Bulk Fermi surface coexistence with Dirac surface state in Bi2Se3: A comparison of photoemission and Shubnikov-de Haas measurements. Phys Rev B, 2010, 81: 205407ADSCrossRefGoogle Scholar
  83. 83.
    Chen J, Qin H J, Yang F, et al. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3. Phys Rev Lett, 2010, 105: 176602ADSCrossRefGoogle Scholar
  84. 84.
    Chen J, He X Y, Wu K H, et al. Tunable surface conductivity in Bi2Se3 revealed in diffusive electron transport. Phys Rev B, 2011, 83: 241304ADSCrossRefGoogle Scholar
  85. 85.
    Checkelsky J G, Hor Y S, Cava R J, et al. Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3. Phys Rev Lett, 2011, 106: 196801ADSCrossRefGoogle Scholar
  86. 86.
    Ren Z, Taskin A A, Sasaki S, et al. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys Rev B, 2010, 82: 241306ADSCrossRefGoogle Scholar
  87. 87.
    Xiong J, Petersen A C, Qu D X, et al. Quantum oscillations in a topological insulator Bi2Te2Se with large bulk resistivity (6 Ω cm). Physica E, 2012, 44: 917–920ADSCrossRefGoogle Scholar
  88. 88.
    Lin H, Das T, Wray L A, et al. An isolated Dirac cone on the surface of ternary tetradymite-like topological insulators. New J Phys, 2011, 13: 095005CrossRefGoogle Scholar
  89. 89.
    Wang L L, Johnson D D. Ternary tetradymite compounds as topological insulators. Phys Rev B, 2011, 83: 241309ADSCrossRefGoogle Scholar
  90. 90.
    Neupane M, Xu S Y, Wray L A, et al. Topological surface states and Dirac point tuning in ternary topological insulators. Phys Rev B, 2012, 85: 235406ADSCrossRefGoogle Scholar
  91. 91.
    Ji H W, Allred J M, Fuccillo M K, et al. Bi2Te1.6S1.4: A topological insulator in the tetradymite family. Phys Rev B, 2012, 85: 201103ADSCrossRefGoogle Scholar
  92. 92.
    Zhang J S, Chang C Z, Zhang Z C, et al. Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators. Nature Commun, 2011, 2: 574ADSCrossRefGoogle Scholar
  93. 93.
    Kong D S, Chen Y L, Cha J J, et al. Ambipolar field effect in the ternary topological insulator (BixSb1−x)2Te3 by composition tuning. Nature Nanotech, 2011, 6: 705–709ADSCrossRefGoogle Scholar
  94. 94.
    Arakane T, Sato T, Souma S, et al. Tunable Dirac cone in the topological insulator Bi2−xSbxTe3−ySey. Nature Commun, 2012, 3: 636ADSCrossRefGoogle Scholar
  95. 95.
    Ren Z, Taskin A A, Sasaki S, et al. Optimizing Bi2−xSbxTe3−ySey solid solutions to approach the intrinsic topological insulator regime. Phys Rev B, 2011, 84: 165311ADSCrossRefGoogle Scholar
  96. 96.
    Taskin A A, Ren Z, Sasaki S, et al. Observation of Dirac holes and electrons in a topological insulator. Phys Rev Lett, 2011, 107: 016801ADSCrossRefGoogle Scholar
  97. 97.
    Chadov S, Qi X L, Kübler J, et al. Tunable multifunctional topological insulators in ternary Heusler compounds. Nature Mater, 2010, 9: 541–545ADSCrossRefGoogle Scholar
  98. 98.
    Lin H, Wray L A, Xia Y, et al. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat Mater, 2010, 9: 546–549ADSCrossRefGoogle Scholar
  99. 99.
    Al-Sawai W, Lin H, Markiewicz R S, et al. Topological electronic structure in half-Heusler topological insulators. Phys Rev B, 2010, 82: 125208ADSCrossRefGoogle Scholar
  100. 100.
    Gofryk K, Kaczorowski D, Plackowski T, et al. Magnetic and transport properties of rare-earth-based half-Heusler phases RPdBi: Prospective systems for topological quantum phenomena. Phys Rev B, 2011, 84: 035208ADSCrossRefGoogle Scholar
  101. 101.
    Liu C, Lee Y, Kondo T, et al. Metallic surface electronic state in half-Heusler compounds RPtBi (R = Lu, Dy, Gd). Phys Rev B, 2011, 83: 205133ADSCrossRefGoogle Scholar
  102. 102.
    utch N P, Syers P, Kirshenbaum K, et al. Superconductivity in the topological semimetal YPtBi. Phys Rev B, 2011 84: 220504CrossRefGoogle Scholar
  103. 103.
    Shekhar C, Ouardi S, Fecher G H, et al. Electronic structure and linear magnetoresistance of the gapless topological insulator PtLuSb. Appl Phys Lett, 2012, 100: 252109ADSCrossRefGoogle Scholar
  104. 104.
    Miyawaki T, Sugimoto N, Fukatani N, et al. Structural and electrical properties of half-Heusler La-Pt-Bi thin films grown by 3-source magnetron co-sputtering. J Appl Phys, 2012, 111: 07E327CrossRefGoogle Scholar
  105. 105.
    Canfield P C, Thompson J D, Beyermann W P, et al. Magnetism and heavy fermion-like behavior in the RBiPt series. J Appl Phys, 1991, 70: 5800–5802ADSCrossRefGoogle Scholar
  106. 106.
    Goll G, Marz M, Hamann A, et al. Thermodynamic and transport properties of the non-centrosymmetric superconductor LaBiPt. Physica B, 2008, 403: 1065–1067ADSCrossRefGoogle Scholar
  107. 107.
    Lin H, Wray L A, Xia Y, et al. Single-Dirac-cone Z 2 topological insulator phases in distorted Li2AgSb-class and related quantum critical Li-based spin-orbit compounds. arXiv:1004.0999Google Scholar
  108. 108.
    Shay J L, Wernick J H. Ternary chalcopyrite semiconductors: Growth, electronic properties and applications. Oxford: Pergamon Press, 1975Google Scholar
  109. 109.
    Medvedkin G A, Ishibashi T, Nishi T, et al. Room temperature ferromagnetism in novel diluted magnetic semiconductor (Cd1−xMnx)GeP2. Jpn J Appl Phys, 2000, 39: L949–L951ADSCrossRefGoogle Scholar
  110. 110.
    Cho S, Choi S, Cha G B, et al. Room-temperature ferromagnetism in (Zn1−xMnx)GeP2 semiconductors. Phys Rev Lett, 2002, 88: 257203ADSCrossRefGoogle Scholar
  111. 111.
    Erwin S C, Žutić I. Tailoring ferromagnetic chalcopyrites. Nature Mater, 2004, 3: 410–414ADSCrossRefGoogle Scholar
  112. 112.
    Lin H, Markiewicz R S, Wray L A, et al. Single-Dirac-cone topological surface states in the TlBiSe2 class of topological semiconductors. Phys Rev Lett, 2010, 105: 036404ADSCrossRefGoogle Scholar
  113. 113.
    Yan B H, Liu C X, Zhang H J, et al. Theoretical prediction of topological insulators in thallium-based III-V-VI2 ternary chalcogenides. Europhys Lett, 2010, 90: 37002ADSCrossRefGoogle Scholar
  114. 114.
    Eremeev S V, Bihlmayer G, Vergniory M, et al. Ab initio electronic structure of thallium-based topological insulators. Phys Rev B, 2011, 83: 205129ADSCrossRefGoogle Scholar
  115. 115.
    Kuroda K, Ye M, Kimura A, et al. Experimental realization of a threedimensional topological insulator phase in ternary chalcogenide TlBiSe2. Phys Rev Lett, 2010, 105: 146801ADSCrossRefGoogle Scholar
  116. 116.
    Sato T, Segawa K, Guo H, et al. Direct evidence for the Dirac-cone topological surface states in the ternary chalcogenide TlBiSe2. Phys Rev Lett, 2010, 105: 136802ADSCrossRefGoogle Scholar
  117. 117.
    Xu S Y, Xia Y, Wray L A, et al. Topological phase transition and texture inversion in a tunable topological insulator. Science, 2011, 332: 560–564ADSCrossRefGoogle Scholar
  118. 118.
    Chen Y L, Liu Z K, Analytis J G, et al. Single Dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family. Phys Rev Lett, 2010, 105: 266401ADSCrossRefGoogle Scholar
  119. 119.
    Yan B H, Zhang H J, Liu C X, et al. Theoretical prediction of topological insulator in ternary rare earth chalcogenides. Phys Rev B, 2010, 82: 161108ADSCrossRefGoogle Scholar
  120. 120.
    Yan B H, Műchler L, Qi X L, et al. Topological insulators in filled skutterudites. Phys Rev B, 2012, 85: 165125ADSCrossRefGoogle Scholar
  121. 121.
    Sun Y, Chen X Q, Yunoki S, et al. New family of three-dimensional topological insulators with antiperovskite structure. Phys Rev Lett, 2010, 105: 216406ADSCrossRefGoogle Scholar
  122. 122.
    Yang K, Setyawan W, Wang S D, et al. A search model for topological insulators with high-throughput robustness descriptors. Nat Mater, 2012, 11: 614–619ADSCrossRefGoogle Scholar
  123. 123.
    Zhang H J, Chadov S, Müchler L, et al. Topological insulators in ternary compounds with a honeycomb lattice. Phys Rev Lett, 2011, 106: 156402ADSCrossRefGoogle Scholar
  124. 124.
    Bahramy M S, Yang B J, Arita R, et al. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat Commun, 2012, 3: 679CrossRefGoogle Scholar
  125. 125.
    Kim J, Kim J, Jhi S H. Prediction of topological insulating behavior in crystalline Ge-Sb-Te. Phys Rev B, 2010, 82: 201312ADSCrossRefGoogle Scholar
  126. 126.
    Sa B S, Zhou J, Song Z T, et al. Pressure-induced topological insulating behavior in the ternary chalcogenide Ge2Sb2Te5. Phys Rev B, 2011, 84: 085130ADSCrossRefGoogle Scholar
  127. 127.
    Sa B, Zhou J, Sun Z, et al. Strain-induced topological insulating behavior in ternary chalcogenide Ge2Sb2Te5. Europhys Lett, 2011, 97: 27003ADSCrossRefGoogle Scholar
  128. 128.
    Jin H, Song J H, Freeman A J, et al. Candidates for topological insulators: Pb-based chalcogenide series. Phys Rev B, 2011, 83: 041202ADSCrossRefGoogle Scholar
  129. 129.
    Kuroda K, Miyahara H, Ye M, et al. Experimental verification of PbBi2Te4 as a 3D topological insulator. Phys Rev Lett, 2012, 108: 206803ADSCrossRefGoogle Scholar
  130. 130.
    Souma S, Eto K, Nomura M, et al. Topological surface states in leadbased ternary telluride Pb(Bi1−xSbx)2Te4. Phys Rev Lett, 2012, 108: 116801ADSCrossRefGoogle Scholar
  131. 131.
    Eremeev S V, Landolt G, Menshchikova T V, et al. Atom-specific spin mapping and buried topological states in a homologous series of topological insulators. Nat Commun, 2012, 3: 635CrossRefGoogle Scholar
  132. 132.
    Xu S Y, Wray L A, Xia Y, et al. Discovery of several large families of topological insulator classes with backscattering-suppressed spinpolarized single-dirac-cone on the surface. arXiv:1007.5111Google Scholar
  133. 133.
    Wang Y J, Lin H, Das T, et al. Topological insulators in the quaternary chalcogenide compounds and ternary famatinite compounds. New J Phys, 2011, 13: 085017CrossRefGoogle Scholar
  134. 134.
    Chen S Y, Gong X G, Duan C G, et al. Band structure engineering of multinary chalcogenide topological insulators. Phys Rev B, 2011, 83: 245202ADSCrossRefGoogle Scholar
  135. 135.
    Raghu S, Qi X L, Honerkamp C, et al. Topological Mott insulators. Phys Rev Lett, 2008, 100: 156401ADSCrossRefGoogle Scholar
  136. 136.
    Zhang Y, Ran Y, Vishwanath A. Topological insulators in three dimensions from spontaneous symmetry breaking. Phys Rev B, 2009, 79: 245331ADSCrossRefGoogle Scholar
  137. 137.
    Dzero M, Sun K, Galitski V, et al. Topological Kondo insulators. Phys Rev Lett, 2010, 104: 106408ADSCrossRefGoogle Scholar
  138. 138.
    Dzero M, Sun K, Coleman P, et al. Theory of topological Kondo insulators. Phys Rev B, 2012, 85: 045130ADSCrossRefGoogle Scholar
  139. 139.
    Li J, Chu R L, Jain J K, et al. Topological Anderson insulator. Phys Rev Lett, 2009, 102: 136806ADSCrossRefGoogle Scholar
  140. 140.
    Groth C W, Wimmer M, Akhmerov A R, et al. Theory of the topological Anderson insulator. Phys Rev Lett, 2009, 103: 196805ADSCrossRefGoogle Scholar
  141. 141.
    Guo H M, Rosenberg G, Refael G, et al. Topological Anderson insulator in three dimensions. Phys Rev Lett, 2010, 105: 216601ADSCrossRefGoogle Scholar
  142. 142.
    Haldane F D M. Model for a quantum Hall effect without landau levels: Condensed-matter realization of the “parity anomaly”. Phys Rev Lett, 1988, 61: 2015–2018MathSciNetADSCrossRefGoogle Scholar
  143. 143.
    Liu C X, Qi X L, Dai X, et al. Quantum anomalous Hall effect in Hg1−yMnyTe quantum wells. Phys Rev Lett, 2008, 101: 146802ADSCrossRefGoogle Scholar
  144. 144.
    Yu R, Zhang W, Zhang H J, et al. Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329: 61–64ADSCrossRefGoogle Scholar
  145. 145.
    Qiao Z H, Yang S Y A, Feng WX, et al. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Phys Rev B, 2010, 82: 161414ADSCrossRefGoogle Scholar
  146. 146.
    Ding J, Qiao Z H, Feng W X, et al. Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An abinitio study. Phys Rev B, 2011, 84: 195444ADSCrossRefGoogle Scholar
  147. 147.
    Zhang H J, Zhang X, Zhang S C. Quantum anomalous hall effect in magnetic topological insulator GdBiTe3. arXiv:1108.4857Google Scholar
  148. 148.
    Fu L, Kane C L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys Rev Lett, 2008, 100: 096407ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of PhysicsBeijing Institute of TechnologyBeijingChina

Personalised recommendations