Skip to main content
Log in

Experimental investigation on the wing-wake interaction at the mid stroke in hovering flight of dragonfly

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

This paper focuses on flow structures of the wing-wake interaction between the hind wing and the wake of the forewing in hovering flight of a dragonfly since there are arguments whether the wing-wake interaction is useful or not. A mechanical flapping model with two tandem wings is used to study the interaction. In the device, two identical simplified model wings are mounted to the flapping model and they are both scaled up to keep the Reynolds number similar to those of dragonfly in hovering flight since our experiment is conducted in a water tank. The kinetic pattern of dragonfly (Aeschna juncea) is chosen because of its special interesting asymmetry. A multi-slice phase-locked stereo particle image velocimetry (PIV) system is used to record flow structures around the hind wing at the mid downstroke (t/T=0.25) and the mid upstroke (t/T=0.75). To make comparison of the flow field between with and without the influence of the wake, flow structures around a single flapping wing (hind wing without the existence of the forewing) at these two stroke phases are also recorded. A local vortex identification scheme called swirling strength is applied to determine the vortices around the wing and they are visualized with the iso-surface of swirling strength. This paper also presents contour lines of ω z at each spanwise position of the hind wing, the vortex core position of the leading edge vortex (LEV) of hind wing with respect to the upper surface of hind wing, the circulation of the hind wing LEV at each spanwise position and so on. Experimental results show that dimension and strength of the hind wing LEV are impaired at the mid stroke in comparison with the single wing LEV because of the downwash from the forewing. Our results also reveal that a wake vortex from the forewing traverses the upper surface of the hind wing at the mid downstroke and its distance to the upper surface is about 40% of the wing chord length. At the instant, the distance of the hind wing LEV to the upper surface is about 20% of the wing chord length. Thus, there must be a wing-wake interaction mechanism that makes the wake vortex become an additional LEV of the hind wing and it can partly compensate the hind wing for its lift loss caused by the downwash from the forewing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duan H, Zhang Y, Liu S. Multiple UAVs/UGVs heterogeneous coordinated technique based on Receding Horizon Control (RHC) and velocity vector control. Sci China-Tech Sci, 2011, 54(4):869–876

    Article  MATH  Google Scholar 

  2. Duan H, Shao S, SU B, et al. New development thoughts on the bioinspired intelligence based control for unmanned combat aerial vehicle. Sci China-Tech Sci, 2010, 53(8):2025–2031

    Article  Google Scholar 

  3. Duan H, Liu S. Unmanned air/ground vehicles heterogeneous cooperative techniques: Current status and prospects. Sci China-Tech Sci, 2010, 53(5):1349–1355

    Article  MathSciNet  Google Scholar 

  4. Norberg R A. Hovering flight of the dragonfly Aeschna juncea L. New York: Plenum Press, 1975:763–781

    Google Scholar 

  5. Alexander D E. Unusual phase relationships between the forewings and hindwings in flying dragonflies. J Exp Biol, 1984, 109(1):379–383

    Google Scholar 

  6. Alexander D E. Wind tunnel studies of turns by flying dragonflies. J Exp Biol, 1986, 122:81–98

    Google Scholar 

  7. Azuma A, Azuma S, Watanabe I, et al. Flight mechanics of a dragonfly. J Exp Biol, 1985, 116(1):79–107

    Google Scholar 

  8. Azuma A, Watanabe T. Flight performance of a dragonfly. J Exp Biol, 1988, 137(1):221–252

    Google Scholar 

  9. Wakeling J M, Ellington C P. Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight. J Exp Biol, 1997, 200(3):557–582

    Google Scholar 

  10. Wang H, Zeng L, Liu H, et al. Measuring wing kinematics, flight tra jectory and body attitude during forward flight and turning maneuvers in dragonflies. J Exp Biol, 2003, 206(4):745–757

    Article  Google Scholar 

  11. Ruppell G. Kinematic analysis of symmetrical flight manoeuvres of odonata. J Exp Biol, 1989, 144(1):13–42

    Google Scholar 

  12. Maybury W J, Lehmann F O. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. J Exp Biol, 2004, 207(26):4707–4726

    Article  Google Scholar 

  13. Reavis M A, Luttges M W. Aeroodynamic forces produced by a dragonfly. In: AIAA, Aerospace Sciences Meeting, 26th. Reno, NV: AIAA, 1988. 1–13

    Google Scholar 

  14. Saharon D, Luttges M. Three-dimensional flow produced by a pitching-plunging model dragonfly wing. In: AIAA, Aerospace Sciences Meeting, 25th. Reno, NV: AIAA, 1987. 1–17

    Google Scholar 

  15. Saharon D, Luttges M W. Visualization of unsteady separated flow produced by mechanically driven dragonfly wing kinematics model. In: AIAA, Aerospace Sciences Meeting, 26th. Reno, NV: AIAA, 1988. 1–23

    Google Scholar 

  16. Saharon D, Luttges M W. Dragonfly unsteady aerodynamics-The role of the wing phase relations in controlling the produced flows. In: AIAA, Aerospace Sciences Meeting, 27th. Reno, NV: AIAA, 1989. 1–19

    Google Scholar 

  17. Sun M, Lan S L. A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering. J Exp Biol, 2004, 207(11):1887–1901

    Article  Google Scholar 

  18. Isogai K, Fujishiro S, Saitoh T, et al. Unsteady three-dimensional viscous flow simulation of a dragonfly hovering. AIAA J, 2004, 42(10):2053–2059

    Article  ADS  Google Scholar 

  19. Yamamoto M, Isogai K. Measurement of unsteady fluid dynamic forces for a mechanical dragonfly model. AIAA J, 2005, 43(12):2475–2480

    Article  ADS  Google Scholar 

  20. Thomas A L R, Taylor G K, Srygley R B, et al. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J Exp Biol, 2004, 207(24):4299–4323

    Article  Google Scholar 

  21. Wang J K, Sun M. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight. J Exp Biol, 2005, 208(19):3785–3804

    Article  Google Scholar 

  22. Huang H, Sun M. Dragonfly forewing-hindwing interaction at various flight speeds and wing phasing. AIAA J, 2007, 45(2):508–511

    Article  ADS  Google Scholar 

  23. Wang Z J, Russell D. Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Phys Rev Lett, 2007, 99:148101

    Article  ADS  Google Scholar 

  24. Usherwood J R, Lehmann F O. Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. J R Soc Interface, 2008, 5(28):1303–1307

    Article  Google Scholar 

  25. Lehmann F O. Wing-wake interaction reduces power consumption in insect tandem wings. Exp Fluids, 2009, 46(5):765–775

    Article  Google Scholar 

  26. Dickinson M H, Lehmann F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight. Science, 1999, 284(5422):1954–1960

    Article  Google Scholar 

  27. Birch J M, Dickinson M H. The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. J Exp Biol, 2003, 206(13):2257–2272

    Article  Google Scholar 

  28. Lu Y, Shen G X, Lai G J. Dual leading-edge vortices on flapping wings. J Exp Biol, 2006, 209(24):5005–5016

    Article  Google Scholar 

  29. Lu Y, Shen G X, Su W H. Flow visualization of dragonfly hovering via an electromechanical model. AIAA J, 2007, 45(3):615–623

    Article  ADS  Google Scholar 

  30. Yao D P, Shen G X, Zhu B L, et al. Force measurement of hovering Dragonfly via an electromechanical model. J Exp Fluid Mech, 2011, 25(1):69–75

    Google Scholar 

  31. Lehmann F O. When wings touch wakes: Understanding locomotor force control by wake-wing interference in insect wings. J Exp Biol, 2008, 211(2):224–233

    Article  Google Scholar 

  32. Wang Z J. Dissecting insect flight. Annual Review of Fluid Mechanics, 2005, 37:183–210

    Article  ADS  Google Scholar 

  33. Usherwood J R, Ellington C P. The aerodynamics of revolving wings-I. Model hawkmoth wings. J Exp Biol, 2002, 205(11):1547–1564

    Google Scholar 

  34. Usherwood J R, Ellington C P. The aerodynamics of revolving wings -II. Propeller force coefficients from mayfly to quail. J Exp Biol, 2002, 205(11):1565–1576

    Google Scholar 

  35. Wu J H, Sun M. Unsteady aerodynamic forces of a flapping wing. J Exp Biol, 2004, 207(7):1137–1150

    Article  Google Scholar 

  36. Wu Y L, Liu S H, Yuan H J, et al. PIV measurement on internal instantaneous flows of a centrifugal pump. Sci China-Tech Sci, 2011, 54(2):270–276

    Article  Google Scholar 

  37. Huang B, Wang G. Experimental and numerical investigation of unsteady cavitating flows through a 2D hydrofoil. Sci China-Tech Sci, 2011, 54(7):1801–1812

    Article  MATH  Google Scholar 

  38. Tian W, Deng X, Wang Y, et al. Study on flow behavior and structure over chined fuselage at high angle of attack. Sci China-Tech Sci, 2010, 53(8):2057–2067

    Article  Google Scholar 

  39. Atif A, Benmansour S, Bois G, et al. Numerical and experimental comparison of the vaned diffuser interaction inside the impeller velocity field of a centrifugal pump. Sci China-Tech Sci, 2011, 54(2):286–294

    Article  MATH  Google Scholar 

  40. Lai G, Shen G. Image mapping approach based on biharmonic spline interpolation concerning dot arrangement and multi-mapping. J Beijing Univ Aeronaut Astronaut, 2009, 35(10):1214–1219

    Google Scholar 

  41. Soloff S M, Adrian R J, Liu Z C. Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol, 1997, 8(12):1441–1454

    Article  ADS  Google Scholar 

  42. Raffel M, Willert C E, Wereley S T, et al. Particle Image Velocimetry. Berlin, Heidelberg, New York: Springer, 2007

    Google Scholar 

  43. Shavit U, Lowe R J, Steinbuck J V. Intensity Capping: A simple method to improve cross-correlation PIV results. Exp Fluids, 2007, 42(2):225–240

    Article  Google Scholar 

  44. Huang C J, Wu Z J, Li Z L, et al. Simultaneous measurement of particle velocity and size based on gray difference and autocorrelation. Sci China-Tech Sci, 2010, 53(10):2833–2838

    Article  MathSciNet  Google Scholar 

  45. Lu X, Huang N, Tong D. Wind tunnel experiments on natural snow drift. Sci China-Tech Sci, 2012, 55(4):927–938

    Article  Google Scholar 

  46. Tanimura S, Komiyama M, Takeishi K, et al. Visualization of flashback in a premixed burner with swirling flow. Sci China-Tech Sci, 2010, 53(1):40–45

    Article  Google Scholar 

  47. Yang H, Kim T, Lu T. Characteristics of annular impinging jets with/without swirling flow by short guide vanes. Sci China-Tech Sci, 2011, 54(3):749–757

    Article  Google Scholar 

  48. Hu J, Yang S F, Fu X H. Experimental investigation on propagating characteristics of sinusoidal unsteady flow in open-channel with smooth bed. Sci China-Tech Sci, 2012, 55(7):2028–2038

    Article  Google Scholar 

  49. Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech, 1999, 387:353–396

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Van Den Berg C, Ellington C P. The three dimensional leading edge vortex of a hovering model hawkmoth. Phil Trans R Soc B, 1997, 352(1351):329–340

    Article  ADS  Google Scholar 

  51. Birch J M, Dickinson M H. Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature, 2001, 412(6848):729–733

    Article  ADS  Google Scholar 

  52. Ellington C P, Van Den Berg C, Willmott A P, et al. Leading-edge vortices in insect flight. Nature, 1996, 384(6610):626–626

    Article  ADS  Google Scholar 

  53. Willmott A P, Ellington C P, Thomas A L R. Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, Manduca sexta. Phil Trans R Soc B, 1997, 352(1351):303–316

    Article  ADS  Google Scholar 

  54. Birch J M, Dickson W B, Dickinson M H. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J Exp Biol, 2004, 207(7):1063–1072

    Article  Google Scholar 

  55. Lu Y, Shen G X. Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing. J Exp Biol, 2008, 211(8):1221–1230

    Article  Google Scholar 

  56. Huang S. Experimental investigation of fluid mechanics about butterfly hovering fly via an electromechanical model (in Chinese). Dissertation for the Doctoral Degree. Beijing: Beihang University, 2009

    Google Scholar 

  57. Huang S Q, Shen G X, Wei L, et al. Flow visualization of butterfly hovering fly via a mechanical model. J Exp Fluid Mech, 2010, 24(2):59–64

    Google Scholar 

  58. Zhang M M, XU J Z. Active control of fluctuating pressure induced by blade-vortex interaction. Sci China-Tech Sci, 2011, 54(4):862–868

    Article  Google Scholar 

  59. Wang Z J. The role of drag in insect hovering. J Exp Biol, 2004, 207(23):4147–4155

    Article  Google Scholar 

  60. Young J, Walker S M, Bomphrey R J, et al. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 2009, 325(5947):1549–1552

    Article  ADS  Google Scholar 

  61. Wan Z, Zhang B, Yang C, et al. Static aeroelastic analysis of a high-aspect-ratio wing based on wind-tunnel experimental aerodynamic forces. Sci China-Tech Sci, 2011, 54(10):2716–2722

    Article  MATH  Google Scholar 

  62. Song B, Lee C H. A Favré averaged transition prediction model for hypersonic flows. Sci China-Tech Sci, 2010, 53(8):2049–2056

    Article  MATH  Google Scholar 

  63. Wu Z G, Chen L, Yang C, et al. Gust response modeling and alleviation scheme design for an elastic aircraft. Sci China-Tech Sci, 2010, 53(11):3110–3118

    Article  MathSciNet  MATH  Google Scholar 

  64. Gao Z X, Lee C H. A flamelet model for turbulent diffusion combustion in supersonic flow. Sci China-Tech Sci, 2010, 53(12):3379–3388

    Article  MATH  Google Scholar 

  65. Meng B, Wu H X. On characteristic modeling of a class of flight vehicles attitude dynamics. Sci China-Tech Sci, 2010, 53(8):2074–2080

    Article  MathSciNet  MATH  Google Scholar 

  66. Barut A, Das M, Madenci E. Nonlinear deformations of flapping wings on a micro air vehicle. Newport, RI, USA: American Institute of Aeronautics and Astronautics Inc., 2006. 782–806

    Google Scholar 

  67. Pan Z W, Xing Y F, Zhu L W, et al. Liquid propellant analogy technique in dynamic modeling of launch vehicle. Sci China-Tech Sci, 2010, 53(8):2102–2110

    Article  MATH  Google Scholar 

  68. Liu H W, Wang Z K, Zhang Y L. Coupled modeling and analysis of radiometer effect and residual gas damping on proof mass in purely gravitational orbit. Sci China-Tech Sci, 2011, 54(4):894–902

    Article  ADS  MATH  Google Scholar 

  69. Li K B, Chen L, Bai X Z. Differential geometric modeling of guidance problem for interceptors. Sci China-Tech Sci, 2011, 54(9):2283–2295

    Article  MathSciNet  MATH  Google Scholar 

  70. Wang H B, Qin N, Sun M B, et al. A hybrid LES (Large Eddy Simulation)/assumed sub-grid PDF (Probability Density Function) model for supersonic turbulent combustion. Sci China-Tech Sci, 2011, 54(10):2694–2707

    Article  MATH  Google Scholar 

  71. Chen Y, Baoyin H X, Li J F. Trajectory design for the Moon departure libration point mission in full ephemeris model. Sci China-Tech Sci, 2011, 54(11):2924–2934

    Article  Google Scholar 

  72. Yang C, Zhang B, WAN Z, et al. A method for static aeroelastic analysis based on the high-order panel method and modal method. Sci China-Tech Sci, 2011, 54(3):741–748

    Article  MATH  Google Scholar 

  73. Xie C, Yang C. Linearization method of nonlinear aeroelastic stability for complete aircraft with high-aspect-ratio wings. Sci China-Tech Sci, 2011, 54(2):403–411

    Article  MATH  Google Scholar 

  74. Shyy W, Aono H, Chimakurthi S K, et al. Recent progress in flapping wing aerodynamics and aeroelasticity. Sci China-Tech Sci, 2010, 46(7):284–327

    Google Scholar 

  75. Fan Y, Zhu J, Hu C, et al. Aeroservoelastic model based active control for large civil aircraft. Sci China-Tech Sci, 2010, 53(4):1126–1137

    Article  MathSciNet  MATH  Google Scholar 

  76. Liu T, Ren Y. Vibration and flutter of wind turbine blade modeled as anisotropic thin-walled closed-section beam. Sci China-Tech Sci, 2011, 54(3):715–722

    Article  MathSciNet  MATH  Google Scholar 

  77. Yang C, Liu X, Wu Z. Unsteady aerodynamic modeling based on POD-observer method. Sci China-Tech Sci, 2010, 53(8):2032–2037

    Article  MATH  Google Scholar 

  78. Chen W Q, Zhu X Y, Huang Z Y. Modeling of multi-inclusion composites with interfacial imperfections: Micromechanical and numerical simulations. Sci China-Tech Sci, 2010, 53(3):720–730

    Article  MATH  Google Scholar 

  79. Hamamoto M, Ohta Y, Hara K, et al. Design of flexible wing for flapping flight by fluid-structure interaction analysis. In: 2005 IEEE International Conference on Robotics and Automation (ICRA), Vols 1–4, 2005. 2253–2258. Doi: 10.1109/ROBOT.2005.1570448

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GongXin Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, G., Shen, G. Experimental investigation on the wing-wake interaction at the mid stroke in hovering flight of dragonfly. Sci. China Phys. Mech. Astron. 55, 2167–2178 (2012). https://doi.org/10.1007/s11433-012-4907-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4907-2

Keywords

Navigation