Skip to main content
Log in

A study on mechanical behavior of the carbon fiber composite sandwich panel with pyramidal truss cores at different temperatures

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A series of compression tests were conducted to investigate the mechanical properties and failure mechanisms of carbon fiber composite sandwich panels using pyramidal truss cores subjected to temperatures ranging from −100°C to 350°C. The compressive strength and stiffness of sandwich panels decreased as temperature increased. Cryogenic temperatures caused an increase in strength and stiffness, while elevated temperatures resulted in a reduction of strength and stiffness. The effect of temperature on the failure mode of the sandwich panel was revealed as well. The interface between the fiber and matrix was examined by a scanning electron microscope (SEM) in order to study the effect of temperature on strengthening the mechanism and good bonding conditions within the fiber-matrix interface was observed at cryogenic temperatures. The comparison of the predicted and experimental data indicated that the stiffness and strength of the composite sandwich panels for temperature variation was consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibson L J, Ashby M F. Cellular solids: Structure and properties. Cambridge: Cambridge University Press, 1997

    Google Scholar 

  2. Finnegan K, Kooistra G, Wadley H N G, et al. The compressive response of carbon fiber composite pyramidal truss sandwich cores. Int J Mater Res, 2007, 98(12): 1264–1272

    Article  Google Scholar 

  3. Wang B, Wu L Z, Ma L, et al. Fabrication and testing of carbon fiber reinforced truss core sandwich panels. J Mater Sci Technol, 2009, 25(4): 547–550

    Google Scholar 

  4. Fan H L, Meng F H, Yang W. Sandwich panels with kagome lattice cores reinforced by carbon fibers. Compos Struct, 2007, 81(4): 533–539

    Article  Google Scholar 

  5. Wang B, Wu L Z, Ma L, et al. Low-velocity impact characteristics and residual tensile strength of carbon fiber composite lattice core sandwich structures. Compos Part B, 2011, 42(4): 891–897

    Article  Google Scholar 

  6. Fan H L, Jin F N, Fang D N. Characterization of edge effects of composite lattice structures. Compos Sci Technol, 2009, 69(11-12): 1896–1903

    Article  Google Scholar 

  7. Fan H L, Jin F N, Fang D N. Mechanical properties of hierarchical cellular materials. Part I: Analysis. Compos Sci Technol, 2008, 68(15-16): 3380–3387

    Article  Google Scholar 

  8. Xu A G, Zhang G C, Li H, et al. Temperature pattern dynamics in shocked porous materials. Sci China-phys Mech Astron, 2010, 53(8): 1466–1474

    Article  MathSciNet  ADS  Google Scholar 

  9. Wang B, Wu L Z, Ma L, et al. Mechanical behavior of the sandwich structures with carbon fiber-reinforced pyramidal lattice truss core. Mater Des, 2010, 31(5): 2659–2663

    Article  Google Scholar 

  10. Fan H L, Yang W, Wang B, et al. Design and manufacturing of a composite lattice structure reinforced by continuous carbon fibers. Tsinghua Sci Technol, 2006, 11(5): 515–522

    Article  Google Scholar 

  11. Xiong J, Ma L, Wu L Z, et al. Fabrication and crushing behavior of low density carbon fiber composite pyramidal truss structures. Compos Struct, 2010, 92(11): 2695–2702

    Article  Google Scholar 

  12. Cartié D D, Fleck N A. The effect of pin reinforcement upon the through-thickness compressive strength of foam-cored sandwich panels. Compos Sci Technol, 2003, 63(16): 2401–2409

    Article  Google Scholar 

  13. Nanayakkara A, Feih S, Mouritz A P. Experimental analysis of the through-thickness compression properties of z-pinned sandwich composites. Compos Part A, 2011, 42(11): 1673–1680

    Article  Google Scholar 

  14. Asaro R J, Lattimer B, Ramroth W. Structural response of FRP composites during fire. Compos struct, 2009, 87(4): 382–393

    Article  Google Scholar 

  15. Dutta P K. Low-temperature compressive strength of glass-fiber-reinforced polymer composites. J Offshore Mech Arct Eng, 1994, 116: 167–172

    Article  Google Scholar 

  16. Wolfrum J, Eibl S, Lietch L. Rapid evaluation of long-term thermal degradation of carbon fiber epoxy composites. Compos Sci Technol, 2009, 69(3-4): 523–530

    Article  Google Scholar 

  17. Pavlick M M, Johnson W S, Jensen B, et al. Evaluation of mechanical properties of advanced polymers for composite cryotank applications. Compos Part A, 2009, 40(4): 359–367

    Article  Google Scholar 

  18. Grape J A, Gupta V. The effect of temperature on the strength and failure mechanisms of a woven carbon/polyimide laminate under compression. Mech Mater, 1998, 30(3): 165–180

    Article  Google Scholar 

  19. Yoon K J, Kim J S. Prediction of thermal expansion properties of carbon/epoxy laminates for temperature variation. J Compos Mater, 2000, 34: 90–100

    MathSciNet  Google Scholar 

  20. Sánchez-Sáez S, Gómez-del Río T, Barbero E, et al. Static behavior of CFRPs at low temperatures. Compos Part B, 2002, 33(5): 383–390

    Article  Google Scholar 

  21. Kim M G, Kang S G, Kim C G, et al. Tensile response of graphite/epoxy composites at low temperatures. Compos Struct, 2007, 79(1): 84–89

    Article  MathSciNet  Google Scholar 

  22. Xu Y J, Zhang W H. Nuberical modelling of oxidized microstructure and degraded properties of 2D C/SiC composites in air oxidizing environments below 800°C. Mater Sci Eng A, 2011, 528(27): 7974–7982

    Article  Google Scholar 

  23. Cao S H, Wu Z S, Wang X. Tensile properties of CFRP and hybrid FRP composites at elevated temperatures. J Compos Mater, 2009, 43: 315–330

    Article  Google Scholar 

  24. Chu X X, Wu X Z, Huang R J, et al. Mechanical and thermal expansion properties of glass fibers reinforced PEEK composites at cryogenic temperatures. Cryogenics, 2010, 50(2): 84–88

    Article  ADS  Google Scholar 

  25. Krysl P, Ramroth W T, Stewart L K, et al. Finite element modelling of fiber reinforced polymer sandwich panels exposed to heat. Int J Numer Meth Eng, 2004, 61: 49–68

    Article  MATH  Google Scholar 

  26. Birman V. Thermally induced bending and wrinkling in large aspect ratio sandwich panels. Compos Part A, 2005, 36(10): 1412–1420

    Article  Google Scholar 

  27. Birman V, Kardomateas G A, Simitses G J, et al. Response of a sandwich panel subjected to fire or elevated temperature on one of the surfaces. Compos Part A, 2006, 37(7): 981–988

    Article  Google Scholar 

  28. Ramroth W T, Asaro R J, Zhu B, et al. Finite Element Modelling of fire degraded FRP composite panels using a rate dependent constitutive model. Compos Part A, 2006, 37(7): 1015–1023

    Article  Google Scholar 

  29. Liu J Y, Zhou Z G, Ma L, et al. Temperature effects on the strength and crushing behavior of carbon fiber composite truss sandwich cores. Compos Part B, 2011, 42(7): 1860–1866

    Article  Google Scholar 

  30. Gu S, Lu T J, Evans A G. On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity. Int J Heat Mass Transfer, 2001, 44(11): 2163–2175

    Article  MATH  Google Scholar 

  31. ASTM: D695-96. Standard test method for compressive properties of rigid plastics. West Conshohocken (PA): ASTM Int., 1996

    Google Scholar 

  32. ASTM: C365. Standard test method for flat wise compressive properties of sandwich cores. West Conshohocken (PA): ASTM Int., 2006

    Google Scholar 

  33. Gibson A G, Wu Y S, Evans J T, et al. Laminate theory analysis of composites under load in fire. J Compos Mater, 2006, 40(7): 639–658

    Article  Google Scholar 

  34. Feih S, Mathys Z, Gibson A G, et al. Modelling the compression strength of polymer laminates in fire. Compos Part A, 2007, 38(11): 2354–2365

    Article  Google Scholar 

  35. Deshpande V S, Fleck N A. Collapse of truss core sandwich beams in 3-point bending. Int J Solids Struct, 2001, 38(36–37): 6275–6305

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhenGong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Zhou, Z., Wu, L. et al. A study on mechanical behavior of the carbon fiber composite sandwich panel with pyramidal truss cores at different temperatures. Sci. China Phys. Mech. Astron. 55, 2135–2142 (2012). https://doi.org/10.1007/s11433-012-4903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4903-6

Keywords

Navigation