Skip to main content
Log in

The gamma-ray spectral index changes for blazars

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Based upon Fermi 1FGL and EGRET 3EG samples, a sample including 79 blazars (53 FSRQs, 26 BL Lacs) is presented. It is investigated that the correlations between the ratio of EGRET to Fermi blazars γ-ray flux densities and the spectral index differ for EGRET to Fermi blazars for three subclasses of high-frequency peaked BL Lacertae objects-HBL, low-frequency peaked BL Lacertae objects-LBL, and flat spectrum radio quasars-FSRQs. There is a consistent relationship between the ratio of the two γ-ray flux densities and the spectral index difference for the three subclasses. It suggests that the spectrum changed with the source brightness in the gamma-ray band. Both the spectral index difference and the correlation slopes follow a continuous sequence from FSRQs to LBLs to HBLs, which is consistent with the noted blazar sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fugmann W. Are all flat-spectrum radio sources blazars? Astron Astrophys, 1988, 205: 86–92

    ADS  Google Scholar 

  2. Impey C D, Tapia S. The optical polarization properties of quasars. Astrophys J, 1990, 354: 124–139

    Article  ADS  Google Scholar 

  3. Kollgaard R I. Relativistic jets and the nature of BL Lacertae objects. Vistas Astron, 1994, 38: 29–75

    Article  ADS  Google Scholar 

  4. Urry C M, Padovani P. Unified schemes for radio-loud active galactic nuclei. Publ Astron Soc Pac, 1995, 107: 803–845

    Article  ADS  Google Scholar 

  5. Yang J H, Fan J H, Yang R S. The line emissions and polarization in blazers. Sci China-Phys Mech Astron, 2010, 53(6): 1162–1168

    Article  MathSciNet  ADS  Google Scholar 

  6. Yang J H, Fan J H. The central black hole masses for the γ-ray loud blazers. Sci China-Phys Mech Astron, 2010, 53(10): 1921–1927

    Article  ADS  Google Scholar 

  7. Padovani P, Giommi P. The connection between X-ray- and radio-selected BL Lacertae objects. Astrophys J, 1995, 444: 567–581

    Article  ADS  Google Scholar 

  8. Cao X W. Evidence for the evolutionary sequence of blazars: Different types of accretion flows in BL Lacertae objects. Astrophys J, 2002, 570: 13–16

    Article  ADS  Google Scholar 

  9. Fan J H. Relation between BL Lacertae objects and flat-spectrum radio quasars. Astronphys J, 2003, 585: 23–24

    Article  ADS  Google Scholar 

  10. Ma L, Chen L E, Xie G Z, et al. Effects of redshift on the classifying criteria of BL Lacertae objects. Chin J Astron Astrophys, 2007, 7: 345–352

    Article  ADS  Google Scholar 

  11. Xie G Z, Dai H, Zhou S B. The connections between accretion, jets, and blazar unification. Astron J, 2007, 134: 1464–1467

    Article  ADS  Google Scholar 

  12. Xie G Z, Dai B Z, Mei D C, et al. The Doppler effect and spectral energy distribution of blazars. Chin J Astron Astrophys, 2001, 1: 213–220

    Article  ADS  Google Scholar 

  13. Böttcher M, Dermer C D, Finke J D. The hard VHE γ-ray emission in high-redshift TeV blazars: Comptonization of cosmic microwave background radiation in an extended jet? Astrophys J, 2008, 679: 9–12

    Article  Google Scholar 

  14. Dermer C D, Finke J D, Krug H, et al. Gamma-ray studies of blazars: Synchro-compton analysis of flat spectrum radio quasars. Astrophys J, 2009, 692: 32–46

    Article  ADS  Google Scholar 

  15. Graff P B, Georganopoulos M, Perlman E S, et al. A multizone model for simulating the high-energy variability of TeV blazars. Astrophys J, 2008, 689: 68–78

    Article  ADS  Google Scholar 

  16. Ghisellini G, Tavecchio F, Bodo G, et al. TeV variability in blazars: How fast can it be? Mon Not R Astron Soc, 2009, 393: 16–20

    Article  ADS  Google Scholar 

  17. Dondi L, Ghisellini G. Gamma-ray-loud blazars and beaming. Mon Not R Astron Soc, 1995, 273: 583–595

    ADS  Google Scholar 

  18. Fan J H, Adam G, Xie G Z, et al. Correlation between the gamma-ray and the radio emissions. Astron Astrophys, 1998, 338: 27–30

    ADS  Google Scholar 

  19. Fan J H, Xie G Z, Pecontal E, et al. Historic light curve and long-term optical variation of BL Lacertae 2200+420. Astrophys J, 1998, 507: 173–178

    Article  ADS  Google Scholar 

  20. Fan J H, Lin R G. Infrared variation of radio-selected BL Lacertae objects. Astrophys J Sup Ser, 1999, 121: 131–157

    Article  ADS  Google Scholar 

  21. Fan J H, Cheng K S, Zhang L. Multi-wavelength variation properties of γ-ray-loud blazars. Publ Astron Soc Jpn, 2002, 54: 533–539

    ADS  Google Scholar 

  22. Ghisellini G, Maraschi L, Tavecchio F. The Fermi blazars divide. Mon Not R Astron Soc, 2009, 396: 105–109

    Article  ADS  Google Scholar 

  23. Muecke A, Pohl M, Reich P, et al. On the correlation between radio and gamma ray luminosities of active galactic nuclei. Astron Astrophys, 1997, 320: 33–40

    ADS  Google Scholar 

  24. Mao L S, Xie G Z, Bai J M, et al. Statistical properties of a blazar sample and comparison of HBLs, LBLs and FSRQs. Chin J Astron Astrophys, 2005, 5(5): 471–486

    Article  ADS  Google Scholar 

  25. Sambruna R M, Maraschi L, Urry C M. On the spectral energy distributions of blazars. Astrophys J, 1996, 463: 444–465

    Article  ADS  Google Scholar 

  26. Yang J H, Fan J H. The correlation between gamma-ray and radio emissions in γ-ray loud blazars. Chin J Astron Astrophys, 2005, 5: 229–237

    Article  ADS  Google Scholar 

  27. Zhang X, Zhao G, Cheng G S, et al. Gamma-ray and multiwaveband emission form gamma-ray-loud BL Lacertea objects. Chin Phys Lett, 2003, 20(7): 1183–1186

    Article  ADS  Google Scholar 

  28. Hartman R C, Bertsch D L, Bloom S D, et al. The third EGRET catalog of high-energy gamma-ray sources. Astrophys J Sup Ser, 1999, 123: 79–202

    Article  ADS  Google Scholar 

  29. Abdo A A, Ackermann M, Ajello M. et al. The first catalog of active galactic nuclei detected by the Fermi large area telescope. Astrophys J, 2010, 715: 429–457

    Article  ADS  Google Scholar 

  30. Björnsson C I. Multiple inverse compton scatterings and the blazar sequence. Astrophys J, 2010, 723: 417–424

    Article  ADS  Google Scholar 

  31. Chen L, Bai J M. Implications for the blazar sequence and inverse compton models from Fermi bright blazars. Astrophys J, 2011, 735: 108

    Article  ADS  Google Scholar 

  32. Ghisellini G, Tavecchio F, Foschini L, et al. The transition between BL Lac objects and flat spectrum radio quasars. Mon Not R Astron Soc, 2011, 414: 2674–2689

    Article  ADS  Google Scholar 

  33. Ghisellini G, Tagliaferri G, Foschini L, et al. High-redshift Fermi blazers. Mon Not R Astron Soc, 2011, 411: 901–914

    Article  ADS  Google Scholar 

  34. Inoue Y, Inoue S, Kobayashi M A R, et al. Searching for the most distant blazars with the Fermi gamma-ray space telescope. Mon Not R Astron Soc, 2011, 411: 464–468

    Article  ADS  Google Scholar 

  35. Tramacere A, Cavazzuti E, Giommi P, et al. The Fermi blazars’ divide based on the diagnostic of the SEDs peak frequencies. AIPC, 2010, 1223: 79–88

    ADS  Google Scholar 

  36. Abdo A A, Ackermann M, Ajello M, et al. The Fermi-LAT high-latitude survey: Source count distributions and the origin of the extragalactic diffuse background. Astrophys J, 2010, 720: 435–453

    Article  ADS  Google Scholar 

  37. Chang C S, Ros E, Kadler M, et al. The broadband emission properties of AGN jets. arXiv:1101.3284

  38. Karouzos M, Britzen S, Witzel A, et al. γ-rays in flat-spectrum AGN: Revisiting the fast jet hypothesis with the CJF sample. Astron Astrophys, 2011, 529: 16

    Article  ADS  Google Scholar 

  39. Linford J D, Taylor G B, Romani R W, et al. Characteristics of gamma-ray loud blazars in the VLBA imaging and polarimetry survey. Astrophys J, 2011, 726: 16

    Article  ADS  Google Scholar 

  40. Mahony E K, Sadler E M, Murphy T, et al. High-frequency radio properties of sources in the Fermi-LAT 1 year point source catalog. Astrophys J, 2010, 718: 587–595

    Article  ADS  Google Scholar 

  41. Singal J, Petrosian V, Ajello M. Flux and photon spectral index distributions of Fermi-LAT blazars and contribution to the extragalactic gamma-ray background. Astrophys J, 2012, 753: 45–57

    Article  ADS  Google Scholar 

  42. Venters T M, Pavlidou V. The effect of blazar spectral breaks on the blazar contribution to the extragalactic gamma-ray background. Astrophys J, 2011, 737: 80

    Article  ADS  Google Scholar 

  43. Dermer C D, Razzaque S. Acceleration of ultra-high-energy cosmic rays in the colliding shells of blazars and gamma-ray bursts: Constraints from the Fermi gamma-ray space telescope. Astrophys J, 2010, 724: 1366–1372

    Article  ADS  Google Scholar 

  44. Jiang Y Y, Hou L G, Han J L, et al. Do ultrahigh energy cosmic rays come from active galactic nuclei and Fermi γ-ray sources? Astrophys J, 2010, 719: 459–468

    Article  ADS  Google Scholar 

  45. Kim H B, Kim J. Statistical analysis of the correlation between active galactic nuclei and ultra-high energy cosmic rays. J Cosmol Astropart Phys, 2011, 03: 006

    Article  ADS  Google Scholar 

  46. Nemmen R S, Bonatto C, Storchi-Bergmann T. A correlation between the highest energy cosmic rays and nearby active galactic nuclei detected by Fermi. Astrophys J, 2010, 722: 281–288

    Article  ADS  Google Scholar 

  47. Pushkarev A B, Kovalev Y Y, Lister M L. Radio/gamma-ray time delay in the parsec-scale cores of active galactic nuclei. Astrophys J, 2010, 722: 7–11

    Article  ADS  Google Scholar 

  48. Richards J L, Max-Moerbeck W, Pavlidou V, et al. Blazars in the Fermi era: The OVRO 40 m telescope monitoring program. Astrophys J Sup Ser, 2011, 194: 29

    Article  ADS  Google Scholar 

  49. Brown L M J, Robson E I, Gear W K, et al. Multifrequency observations of blazars. IV—The variability of the radio to ultraviolet continuum. Astrophys J, 1989, 340: 150–161

    Article  ADS  Google Scholar 

  50. Gear W K, Robson E I, Brown L M J. Infrared variability of the BL Lacertae object OJ287 since its outburst in 1983. Nature, 1986, 324: 546–547

    Article  ADS  Google Scholar 

  51. Ghisellini G, Villata M, Raiteri C M, et al. Optical-IUE observations of the gamma-ray loud BL Lacertae object S5 0716+714: Data and interpretation. Astron Astrophys, 1997, 327: 61–71

    ADS  Google Scholar 

  52. Raiteri C M, Villata M, Tosti G, et al. Optical and radio behaviour of the BL Lacertae object 0716+714. Astron Astrophys, 2003, 402: 151–169

    Article  ADS  Google Scholar 

  53. Romero G E, Cellone S A, Combi J A. Extreme intranight variability in the BL Lacertae object AO 0235+164. Astron Astrophys, 2000, 360: 47–50

    ADS  Google Scholar 

  54. Villata M, Raiteri C M, Kurtanidze O M, et al. The WEBT BL Lacertae campaign 2001 and its extension. Optical light curves and colour analysis 1994–2002. Astron Astrophys, 2004, 421: 103–114

    Article  ADS  Google Scholar 

  55. Poon H, Fan J H, Fu J N. The optical microvariability and spectral changes of the BL Lacertae object S5 0716+714. Astrophys J Sup Ser, 2009, 185: 511–525

    Article  ADS  Google Scholar 

  56. Wu J H, Peng B, Zhou X, et al. Optical monitoring of BL Lacertae object S5 0716+714 with high temporal resolution. Astron J, 2005, 129: 1818–1826

    Article  ADS  Google Scholar 

  57. Vercellone S, D’Ammando F, Vittorini V, et al. Multiwavelength Observations of 3C 454.3. III. Eighteen months of agile monitoring of the “crazy diamond”. Astrophys J, 2010, 712: 405–420

    Article  ADS  Google Scholar 

  58. Böttcher M, Dermer C D. An evolutionary scenario for blazar unification. Astrophys J, 2002, 564: 86–91

    Article  ADS  Google Scholar 

  59. Fossati G, Maraschi L, Celotti A, et al. A unifying view of the spectral energy distributions of blazers. Mon Not R Astron Soc, 1998, 299: 433–448

    Article  ADS  Google Scholar 

  60. Foschini L, Ghisellini G, Raiteri C M, et al. XMM-Newton observations of a sample of γ-ray loud active galactic nuclei. Astron Astrophys, 2006, 453: 829–838

    Article  ADS  Google Scholar 

  61. Giommi P, Piranomonte S, Perri M, et al. The sedentary survey of extreme high energy peaked BL Lacs. Astron Astrophys, 2005, 434: 385–396

    Article  ADS  Google Scholar 

  62. Nieppola E, Valtaoja E, Tornikoski M, et al. Blazar sequence-an artefact of Doppler boosting. Astron Astrophys, 2008, 488: 867–872

    Article  ADS  Google Scholar 

  63. Nieppola E, Tornikoski M, Valtaoja E. Spectral energy distributions of a large sample of BL Lacertae objects. Astron Astrophys, 2006, 445: 441–450

    Article  ADS  Google Scholar 

  64. Wu Q W. The black hole mass, Eddington ratio and MBH-σ[OIII] relation in young radio galaxies. Mon Not R Astron Soc, 2009, 398: 1905–1914

    Article  ADS  Google Scholar 

  65. Wu Q W. Observational evidence for young radio galaxies is triggered by accretion disk instability. Astrophys J, 2009, 701: 95–99

    Article  ADS  Google Scholar 

  66. Yang J H, Wang Y X, Yang R S. Flux-depending X-ray spectrum index of blazars. Chin J Astron Astrophys, 2006, 6(s2): 341–344

    Article  Google Scholar 

  67. Fossati G, Celotti A, Ghisellini G, et al. Unifying models for X-ray-selected and radio-selected BL Lac objects. Mon Not R Astron Soc, 1997, 289: 136–150

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiangHe Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Fan, J., Nie, J. et al. The gamma-ray spectral index changes for blazars. Sci. China Phys. Mech. Astron. 55, 2179–2185 (2012). https://doi.org/10.1007/s11433-012-4901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4901-8

Keywords

Navigation