Skip to main content
Log in

Theoretical investigation on tunneling magnetoresistance in ferromagnetic/anti-ferromagnetic core/shell system

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Based on Monte Carlo simulations, the effect of structural configuration on the hysteresis behavior and tunneling magnetoresistance (TMR) of composite nanoparticles with ferromagnetic (FM) core/anti-ferromagnetic (AFM) shell is investigated. The simulated results indicate that the coercive field (H c) of composites increases with the decreasing ratio of core-radius (r core) to shell-radius (r shell). When the ratio of r shell to r core is approaching 4:3, H c decreases with increasing AFM thickness. In addition, TMR is found to increase with the decreasing ratio of r core to r shell, resulting from the enhancement of resistance changes in disordered AFM shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moodera J S, Kinder L R, Wong T M, et al. Conduction threshold, switching, and hysteresis in quantum dot arrays. Phys Rev Lett, 1995, 74: 3273–3276

    Article  ADS  Google Scholar 

  2. Ney A, Pampuch C, Koch R, et al. Ploog, programmable computing with a single magnetoresistive element. Nature, 2003, 425: 485–487

    Article  ADS  Google Scholar 

  3. Simonds J L. Magnetoelectronics today and tomorrow. Phys Today, 1995, 48: 26–32

    Article  Google Scholar 

  4. Sakuraba Y, Hattori M, Oogane M, et al. Giant tunneling magnetoresistance in Co2MnSi/Al-O/Co2MnSi magnetic tunnel junctions. Appl Phys Lett, 2006, 88: 192508

    Article  ADS  Google Scholar 

  5. Chen P, Xing D Y, Du Y W, et al. Giant room-temperature magnetoresistance in polycrystalline Zn0.41Fe2.59O4 with α-Fe2O3 grain boundaries. Phys Rev Lett, 2001, 87: 107202

    Article  ADS  Google Scholar 

  6. Parkin S S P, Kaiser C, Panchula A, et al. Giant tunnelling magneto-resistance at room temperature with MgO (100) tunnel barriers. Nat Mater, 2004, 3: 862–867

    Article  ADS  Google Scholar 

  7. Yuasa S J, Nagahama T, Fukushima A, et al. Giant room-temperature magneto-resistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater, 2004, 3: 868–871

    Article  ADS  Google Scholar 

  8. Inoue J, Maekawa S. Theory of tunneling magnetoresistance in granular magnetic films. Phys Rev B, 1996, 53: R11927–R11929

    Article  ADS  Google Scholar 

  9. Ju S, Cai T Y, Guo G Y, et al. Theory of tunneling magnetoresistance and tunneling electroresistance in Co/BiFeO3/La2/3Sr1/3MnO3 junc tions. J Appl Phys, 2008, 104: 053904

    Article  ADS  Google Scholar 

  10. Huang Z G, Chen Z G, Peng K, et al. Monte Carlo simulation of tunneling magnetoresistance in nanostructured materials. Phys Rev B, 2004, 69: 094420–094427

    Article  ADS  Google Scholar 

  11. Vasilakaki M, Trohidou K N. Numerical study of the exchange-bias effect in nanoparticles with ferromagnetic core/ferrimagnetic disordered shell morphology. Phys Rev B, 2009, 79: 144402

    Article  ADS  Google Scholar 

  12. Tan R P, Carrey J L, Respaud M. Voltage and temperature dependence of high-field magnetoresistance in arrays of magnetic nanoparticles. J Appl Phys, 2008, 104: 023908

    Article  ADS  Google Scholar 

  13. Sarah M T. The discovery, development and future of GMR: The Nobel Prize 2007. J Phys D-Appl Phys, 2008, 41: 093001

    Article  Google Scholar 

  14. Peng D L, Sumiyama K, Hihara T, et al. Magnetic properties of monodispersed Co/CoO clusters. Phys Rev B, 2000, 61: 3103–3109

    Article  ADS  Google Scholar 

  15. Ju S, Sun H, Li Z Y. Study of field dependence of magnetoresistance of polycrystalline perovskite manganites. Phys Lett A, 2002, 300: 666–671

    Article  ADS  Google Scholar 

  16. Lin Y B, Huang Z G, Yang Y M, et al. Giant positive magnetoresistance in heterostructure (La0.7Sr0.3MnO3) coated with YBa2Cu3O7 composites. Appl Phys A, 2011, 104: 143–147

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiGao Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Huang, Z. Theoretical investigation on tunneling magnetoresistance in ferromagnetic/anti-ferromagnetic core/shell system. Sci. China Phys. Mech. Astron. 55, 2038–2041 (2012). https://doi.org/10.1007/s11433-012-4850-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4850-2

Keywords

Navigation