Skip to main content
Log in

Universal quantum logic gates in decoherence-free subspace with atoms trapped in distant cavities

  • Article
  • Progress of Projects Supported by NSFC
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We propose a scheme for implementation of a universal set of quantum logic gates in decoherence-free subspace with atoms trapped in distant cavities connected by optical fibers. The selective dispersive couplings between the ground states and the first-excited states of the atom-cavity-fiber system produce a state-dependent Stark shift, which can be used to implement nonlocal phase gates between two logic qubits. The single-logic-qubit quantum gates are achieved by the local two-atom collision and the Stark shift of a single atom. During all the logic operations, the logic qubits remain in decoherence-free subspace and thus the operation is immune to collective dephasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor PW. Algorithms for quantum computation: Discrete logarithms and factorizating. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science. Los Alamitos: IEEE Computer Society Press, 1994. 124–134

    Chapter  Google Scholar 

  2. Sleator T, Weinfurter H. Realizable universal quantum logic gates. Phys Rev Lett, 1995, 74(20): 4087–4090

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Knill E. Quantum computing with realistically noisy devices. Nature, 2005, 434(7029): 39–44

    Article  ADS  Google Scholar 

  4. Zanardi P, Rasetti M. Noiseless quantum codes. Phys Rev Lett, 1997, 79(17): 3306–3309

    Article  ADS  Google Scholar 

  5. Duan L M, Guo G C. Preserving coherence in quantum computation by pairing quantum bits. Phys Rev Lett, 1997, 79(10): 1953–1956

    Article  ADS  Google Scholar 

  6. Mohseni M, Lundeen J S, Resch K J, et al. Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm. Phys Rev Lett, 2003, 91(18): 187903

    Article  ADS  Google Scholar 

  7. Altepeter J B, Hadley P G, Wendelken S M, et al. Experimental investigation of a two-qubit decoherence-free subspace. Phys Rev Lett, 2004, 92(14): 147901

    Article  ADS  Google Scholar 

  8. Kielpinski D, Meyer V, Rowe M A, et al. A decoherence-free quantum memory using trapped ions. Science, 2001, 291(5506): 1013–1015

    Article  ADS  Google Scholar 

  9. Cirac J I, Zoller P, Kimble H J, et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys Rev Lett, 1997, 78(16): 3221–3224; Pellizzari T. Quantum networking with optical fibres. Phys Rev Lett, 1997, 79 (26): 5242–5245

    Article  ADS  Google Scholar 

  10. Serafini A, Mancini S, Bose S. Distributed quantum computation via op tical fibers. Phys Rev Lett, 2006, 96(1): 010503

    Article  ADS  Google Scholar 

  11. Yin Z Q, Li F L. Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys Rev A, 2007, 75(1): 012324

    Article  ADS  Google Scholar 

  12. Yang Z B, Wu H Z, Su W J, et al. Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys Rev A, 2009, 80(1): 012305

    Article  ADS  Google Scholar 

  13. Zheng S B. Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities. Appl Phys Lett, 2009, 94(15): 154101

    Article  ADS  Google Scholar 

  14. Rauschenbeutel A, Nogues G, Osnaghi S, et al. Coherent operation of a tunable quantum phase gate in cavity QED. Phys Rev Lett, 1999, 83(24): 5166–5169

    Article  ADS  Google Scholar 

  15. Zheng S B, Guo G C. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys Rev Lett, 2000, 85(11): 2392–2395

    Article  ADS  Google Scholar 

  16. Boozer A D, Boca A, Miller R, et al. Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. Phys Rev Lett, 2006, 97(8): 083602

    Article  ADS  Google Scholar 

  17. Spillane S M, Kippenberg T J, Painter O J, et al. Ideality in a fibertaper-coupled microresonator system for application to cavity quantum electrodynamics. Phys Rev Lett, 2003, 91(04): 043902

    Article  ADS  Google Scholar 

  18. Ogden C D, Erish E K, Kim M S. Dynamics in a coupled-cavity array. Phys Rev A, 2008, 78(6): 063805

    Article  ADS  Google Scholar 

  19. Benyoucef M, Kiravittaya S, Mei Y F, et al. Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances. Phys Rev B, 2008, 77(3): 035108

    Article  ADS  Google Scholar 

  20. Briegel H J, Raussendorf R. Persistent entanglement in arrays of interacting particles. Phys Rev Lett, 2001, 86(5): 910–913

    Article  ADS  Google Scholar 

  21. Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86(22): 5188–5191

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiBiao Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, S. Universal quantum logic gates in decoherence-free subspace with atoms trapped in distant cavities. Sci. China Phys. Mech. Astron. 55, 1571–1576 (2012). https://doi.org/10.1007/s11433-012-4848-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4848-9

Keywords

Navigation