Skip to main content
Log in

Effects of binary interactions on the color evolution of M33

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In this work, predictions of the spectral energy distribution from populations of single and binary stars are incorporated into a galactic chemical and color evolution model to explore the significance of the effects of the binary interactions on the color evolution of M33. We first constructed a model without binary interactions, and the model is able to reproduce most of the available observational constraints on the distribution of stellar parameters. We then run simulations with the same set of model parameters but with binary interactions considered. By comparing the results for the populations with and without binary interactions, we find that the inclusion of binary interactions makes the surface brightness greater (∼0.1 mag arcsec−2) in FUV-band but smaller (∼0.7 mag arcsec−2) in K-band, while it results in the FUV-K color bluer (∼0.8 mag). To reproduce the observations, a model that considers the binary interactions should make more gas fall onto the disk in the early time of the galaxy evolution, or increase the total stellar mass, or both.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tinsley B M. Evolution of the stars and gas in galaxies. Fundam Cosm Phys, 1980, 5: 287–388

    ADS  Google Scholar 

  2. Chiappini C, Matteucci F, Gratton R. The chemical evolution of the galaxy: The two-infall model. Astrophys J, 1997, 477: 765–780

    Article  ADS  Google Scholar 

  3. Chiappini C, Matteucci F, Romano D. Abundance gradients and the formation of the Milky Way. Astrophys J, 2001, 554: 1044–1058

    Article  ADS  Google Scholar 

  4. Boissier S, Prantzos N. Chemo-spectrophotometric evolution of spiral galaxies—I. The model and the Milky Way. Mon Not R Astron Soc, 1999, 307: 857–876

    Article  ADS  Google Scholar 

  5. Chang R X, Hou J L, Shu C G, et al. Two-component model for the chemical evolution of the galactic disk. Astron Astrophys, 1999, 350: 38–48

    ADS  Google Scholar 

  6. Renda A, Kawata D, Fenner Y, et al. Contrasting the chemical evolution of the Milky Way and Andromeda. Mon Not R Astron Soc, 2005, 356: 1071–1078

    Article  ADS  Google Scholar 

  7. Matteucci F, Spitoni E, Recchi S, et al. The effect of different type Ia supernova progenitors on galactic chemical evolution. Astron Astrophys, 2009, 501: 531–538

    Article  ADS  Google Scholar 

  8. Hou J L, Prantzos N, Bossier S. Abundance gradients and their evolution in the Milky Way disk. Astron Astrophys, 2000, 362: 921–936

    ADS  Google Scholar 

  9. Prantzos N, Boissier S. Chemo-spectrophotometric evolution of spiral galaxies—III. Abundance and color gradients in discs. Mon Not R Astron Soc, 2000, 313: 338–346

    Article  ADS  Google Scholar 

  10. Mollá M, Díaz A I. A grid of chemical evolution models as a tool to interpret spiral and irregular galaxies data. Mon Not R Astron Soc, 2005, 358: 521–543

    Article  ADS  Google Scholar 

  11. Yin J, Hou J L, Prantzos N, et al. Milky Way versus Andromeda: A tale of two disks. Astron Astrophys, 2009, 505: 497–508

    Article  ADS  Google Scholar 

  12. Marcon-Uchida M M, Matteucci F, Costa R D D. Chemical evolution models for spiral disks: The Milky Way, M31, and M33. Astron Astrophys, 2010, 520: A35

    Article  ADS  Google Scholar 

  13. Duquennoy A, Mayor M. Multiplicity among solar-type stars in the solar neighbourhood. II Distribution of the orbital elements in an unbiased sample. Astron Astrophys, 1991, 248: 485–524

    ADS  Google Scholar 

  14. Richichi A, Leinert C, Jameson R, et al. New binary stars in the Taurus and Ophiuchus star-forming regions. Astron Astrophys, 1994, 287: 145–153

    ADS  Google Scholar 

  15. Han Z W, Podsiadlowski P. The single-degenerate channel for the progenitors of Type Ia supernovae. Mon Not R Astron Soc, 2004, 350: 1301–1309

    Article  ADS  Google Scholar 

  16. Pols O R, Marinus M. Monte-Carlo simulations of binary stellar evolution in young open clusters. Astron Astrophys, 1994, 288: 475–501

    ADS  Google Scholar 

  17. Tian B, Deng L C, Han Z W, et al. The blue stragglers formed via mass transfer in old open clusters. Astron Astrophys, 2006, 455: 247–254

    Article  ADS  Google Scholar 

  18. Han Z W, Podsiadlowski P, Maxted P F L, et al. The origin of subdwarf B stars—I. The formation channels. Mon Not R Astron Soc, 2002, 336: 449–466

    Article  ADS  Google Scholar 

  19. Han Z W, Podsiadlowski P, Maxted P F L, et al. The origin of subdwarf B stars—II. Mon Not R Astron Soc, 2003, 341: 669–691

    Article  ADS  Google Scholar 

  20. Liu J Z. Gravitational wave radiation from close double white dwarfs in the galaxy. Mon Not R Astron Soc, 2009, 400: 1850–1858

    Article  ADS  Google Scholar 

  21. Zhang F H, Li L F, Han Z W. The influence of binary interactions on infrared passbands of populations. Mon Not R Astron Soc, 2009, 396: 276–290

    Article  ADS  Google Scholar 

  22. Zhang F H, Han Z W, Li L F, et al. The effects of ultraviolet photometry and binary interactions on photometric redshift and galaxy morphology. Mon Not R Astron Soc, 2010, 408: 1283–1306

    Article  ADS  Google Scholar 

  23. Han Z W, Podsiadlowski P, Lynas-Gray A E. A binary model for the UV-upturn of elliptical galaxies. Mon Not R Astron Soc, 2007, 380: 1098–1118

    Article  ADS  Google Scholar 

  24. Zhang Y, Han Z W, Liu J Z, et al. Testing three derivative methods of stellar population synthesis models. Mon Not R Astron Soc, 2012, 421: 1678–1696

    Article  ADS  Google Scholar 

  25. Freedman W L, Wilson C D, Madore B F. New Cepheid distances to nearby galaxies based on BVRI CCD photometry. II The local group galaxy M33. Astrophys J, 1991, 372: 455–470

    Article  ADS  Google Scholar 

  26. Garnett D R. The luminosity-metallicity relation, effective yields, and metal loss in spiral and irregular galaxies. Astrophys J, 2002, 581: 1019–1031

    Article  ADS  Google Scholar 

  27. Leroy A K, Walter F, Brinks E, et al. The star formation efficiency in nearby galaxies: Measuring where gas forms stars effectively. Astron J, 2008, 136: 2782–2845

    Article  ADS  Google Scholar 

  28. Chang R X, Hou J L, Shen S Y, et al. The mass-dependent star formation histories of disk galaxies: Infall model versus observations. Astrophys J, 2010, 722: 380–387

    Article  ADS  Google Scholar 

  29. Zhang F H, Han Z W, Li L F, et al. Integrated spectral energy distributions and absorption-feature indices of single stellar populations. Mon Not R Astron Soc, 2004, 350: 710–724

    Article  ADS  Google Scholar 

  30. Zhang F H, Han Z W, Li L F, et al. Inclusion of binaries in evolutionary population synthesis. Mon Not R Astron Soc, 2005, 357: 1088–1103

    Article  ADS  Google Scholar 

  31. Heyer M K, Corbelli E, Schneider S E, et al. The molecular gas distribution and Schmidt Law of M33. Astrophys J, 2004, 602: 723–729

    Article  ADS  Google Scholar 

  32. Boissier S, de Gil P A, Boselli A, et al. Radial variation of attenuation and star formation in the largest late-type disks observed with GALEX. Astrophys J Suppl Ser, 2007, 173: 524–537

    Article  ADS  Google Scholar 

  33. Verley S, Corbelli E, Giovanardi C, et al. Star formation in M33: Multiwavelength signatures across the disk. Astron Astrophys, 2009, 493: 453–466

    Article  ADS  Google Scholar 

  34. Corbelli E. Dark matter and visible baryons in M33. Mon Not R Astron Soc, 2003, 342: 199–207

    Article  ADS  Google Scholar 

  35. Gratier P, Braine J, Rodriguez-Fernandez N J, et al. Molecular and atomic gas in the local group galaxy M33. Astron Astrophys, 2010, 522: A3

    Article  ADS  Google Scholar 

  36. Muñoz-Mateos J C, de Gil P A, Bossier S, et al. Specific star formation rate profiles in nearby galaxies: Quantifying the inside-out formation of disks. Astrophys J, 2007, 658: 1006–1026

    Article  ADS  Google Scholar 

  37. Regan M W, Vogel S N. The near-infrared structure of M33. Astrophys J, 1994, 434: 536–545

    Article  ADS  Google Scholar 

  38. Kroupa P, Tout C A, Gilmore G. The distribution of low-mass stars in the galactic disc. Mon Not R Astron Soc, 1993, 262: 545–587

    ADS  Google Scholar 

  39. Asplund M, Grevesse N, Sauval A J, et al. The chemical composition of the sun. Ann Rev Astron Astrophys, 2009, 47: 481–522

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoYu Kang.

Additional information

Recommended by HAN ZhanWen (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, X., Zhang, F. & Zhang, Y. Effects of binary interactions on the color evolution of M33. Sci. China Phys. Mech. Astron. 55, 1505–1509 (2012). https://doi.org/10.1007/s11433-012-4818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4818-2

Keywords

Navigation