Skip to main content
Log in

Hydrostatic pressure influence on magnetic phase diagram and structural parameters of SrTcO3 from first-principles calculations

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The effects of hydrostatic pressure of SrTcO3 are investigated by means of generalized gradient approximation (GGA) plus on-site Coulomb interaction corrections (GGA+U) method within the framework of density functional theory (DFT). Magnetic phase diagrams and structural parameters of SrTcO3 as a function of pressure are predicted. The magnetic ground state of SrTcO3 is found to keep in a G-type antiferromagnetic (G-AFM) structure under the pressure varying from 0 to 100 GPa. With the increase of the pressure, magnetic exchange energy increases, indicating a higher magnetic ordering temperature for SrTcO3 under a larger pressure. Besides the volume of the unit cell, lattice constants, and the bond length, the angles between typical Tc-O-Tc and Sr-O-Sr also decrease with the pressure, leading to strong structural distortions. Very obvious displacements of Sr and O atoms are observed under the pressure. Our work provides necessary understanding on electronic structures of SrTcO3 under high pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miura K, Azuma M, Funakubo H. Electronic and structural properties of ABO3: Role of the B-O coulomb repulsions for ferroelectricity. Materials, 2011, 4(1): 1–338

    Article  Google Scholar 

  2. Chang T R, Jeng H T, Ren C Y, et al. Charge-orbital ordering and ferroelectric polarization in multiferroic TbMn2O5 from first principles. Phys Rev B, 2011, 84(2): 024421

    Article  ADS  Google Scholar 

  3. Jia T, Zhang G, Zeng Z, et al. Orbitally relieved magnetic frustration in NaVO2. Phys Rev B, 2009, 80(4): 045103

    Article  ADS  Google Scholar 

  4. Chen J M, Lee J M, Huang S W, et al. Intra- and intersite electronic excitations in multiferroic TbMnO3 probed by resonant inelastic X-ray scattering. Phys Rev B, 2010, 82(9): 094442

    Article  ADS  Google Scholar 

  5. Weng H, Kawazoe Y, Wan X, et al. Electronic structure and optical properties of layered perovskites Sr2 MO4 (M=Ti, V, Cr, and Mn): An ab initio study. Phys Rev B, 2006, 74(20): 205112

    Article  ADS  Google Scholar 

  6. Ma C L, Yang Z Q, Picozzi S. Ab initio electronic and magnetic structure in La0.66Sr0.33MnO3: Strain and correlation effects. J Phys-Condens Matter, 2006, 18(32): 7717–7728

    Article  ADS  Google Scholar 

  7. Li S, Yang Z Q. Special electronic structures of inverse spinels LiMVO4 (M=Ni and Cu): A first-principles study. Eur Phys J B, 2010, 78: 299–304

    Article  ADS  Google Scholar 

  8. Guennou M, Bouvier P, Krikler B, et al. High-pressure investigation of CaTiO3 up to 60 GPa using X-ray diffraction and Raman spectroscopy. Phys Rev B, 2010, 82(13): 134101

    Article  ADS  Google Scholar 

  9. Yamasaki A, Feldbacher M, Yang Y F, et al. Pressure-induced metal-insulator transition in LaMnO3 is not of Mott-Hubbard type. Phys Rev Lett, 2006, 96(16): 166401

    Article  ADS  Google Scholar 

  10. Hwang H Y, Palstra T T M, Cheong S W, et al. Pressure effects on the magnetoresistance in doped manganese perovskites. Phys Rev B, 1995, 52(21): 15046

    Article  ADS  Google Scholar 

  11. Tetsuhiro K, Hiroshi U, Yoshiyuki I, et al. Structure and dielectric properties of high-pressure perovskite-type oxyfluorides xKTiO2-FC(1−x) BaTiO3. J Appl Phys, 2008, 104: 044101

    Article  Google Scholar 

  12. Zhou J S, Alonso J A, Muonz A, et al. Magnetic structure of LaCrO3 perovskite under high pressure from In Situ neutron diffraction. Phys Rev Lett, 2011, 106(5): 057201

    Article  ADS  Google Scholar 

  13. Rodriguez E E, Poineau F, Llobet A, et al. High temperature magnetic ordering in the 4d perovskite SrTcO3. Phys Rev Lett, 2011, 106(6): 067201

    Article  ADS  Google Scholar 

  14. Kim M, Kim B H, Choi H C, et al. Origin of high Néel temperature in the low coordination number system AFeO2 (A=K and Rb). Phys Rev B, 2010, 81(21): 212405

    Article  ADS  Google Scholar 

  15. Fischer G, Däne M, Ernst A, et al. Exchange coupling in transition metal monoxides: Electronic structure calculations. Phys Rev B, 2009, 80(1): 014408

    Article  ADS  Google Scholar 

  16. Jones E D, Morosin B. Sign of the nearest-neighbor exchange interaction and its derivative in GdAs. Phys Rev, 1967, 160(2): 451–454

    Article  ADS  Google Scholar 

  17. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18): 3865–3868

    Article  ADS  Google Scholar 

  18. Anisimov V I, Aryasetiawan F, Lichtenstein A I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method. J Phys-Condens Matter, 1997, 9: 767–808

    Article  ADS  Google Scholar 

  19. Solovyev I V, Dederichs P H, Anisimov V I. Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb. Phys Rev B, 1994, 50(23): 16861–16871

    Article  ADS  Google Scholar 

  20. Zayak A T, Huang X, Neaton J B, et al. Structural, electronic, and magnetic properties of SrRuO3 under epitaxial strain. Phys Rev B, 2006, 74(9): 094104

    Article  ADS  Google Scholar 

  21. Zhang X L, Zhang G, Jia T, et al. KAgF3: Quasi-one-dimensional magnetism in three-dimensional magnetic ion sublattice. Phys Lett A, 2011, 375(24): 2456–2459

    Article  ADS  Google Scholar 

  22. Chen Y, Hu Q M, Yang Rui. P6222 phase of yttrium above 206 GPa from first principles. Phys Rev B, 2011, 84(13): 132101

    Article  ADS  Google Scholar 

  23. Liu Y, Ni L H, Ren Z H, et al. First-principles study of structural stability and elastic property of pre-perovskite PbTiO3. Chin Phys B, 2012, 21(1): 016201

    Article  ADS  Google Scholar 

  24. Lee S, Pirogov A, Kang M, et al. Giant magneto-elastic coupling in multiferroic hexagonal manganites. Nature, 2008, 451: 805–808

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunLan Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, C., Zang, T. & Wang, X. Hydrostatic pressure influence on magnetic phase diagram and structural parameters of SrTcO3 from first-principles calculations. Sci. China Phys. Mech. Astron. 55, 1253–1257 (2012). https://doi.org/10.1007/s11433-012-4756-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4756-z

Keywords

Navigation