Skip to main content
Log in

Two examples of using physical mechanics approach to evaluate colloidal stability

  • Article
  • Special Issue: Physical Mechanics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Since Mr. Tsien brought up his idea of physical mechanics, as a new field in engineering science, to public attention in the early 50’s of the 20th century, innumerable application examples of physical mechanics approach in diverse fields have manifested its strong vitality increasingly. One of important aspects in applications of physical mechanics is to appropriately choose the microscopic quantity for the system in consideration and build a bridge to connect its relevant microscopic information to its desired macroscopic properties. We present two unique cases of using the physical mechanics approach to study colloidal stability. In the first case we measured the outcomes from artificially induced collisions at individual particle levels, by means of directly observing artificially induced collisions with the aid of optical tweezers. In the second case, by using T-matrix method, the microscopic quantity extinction cross section of the doublet can be accurately evaluated and therefore the measurement range and accuracy of the turbidity methodology for determining the CRC are greatly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsien H S. Physical mechanics, a new field in engineering science. J Amer Rocket Soc, 1953, 23: 17–24

    Google Scholar 

  2. Tsien H S. The properties of pure liquids. J Amer Rocket Soc, 1953, 23: 14–16

    Google Scholar 

  3. Tsien H S. Lennard-Jones and Devonshire Theory for dense gas. Jet Propulsion, 1955, 25: 471–478

    Google Scholar 

  4. Qian X S. The Lectures on Physical Mechanics (in Chinese). Beijing: Science Press, 1962

    Google Scholar 

  5. Zhu R Z. Physical mechanics pioneered by H. S. Tsien. Adv Mech, 2001, 31: 489–499

    Google Scholar 

  6. Poon W. Colloids as big atoms. Science, 2004, 304: 830–831

    Article  Google Scholar 

  7. Arora A K, Tata B V R. Ordering and Phase Transitions in Charged Colloids. New York: VCH Publishers, 1996

    Google Scholar 

  8. Anderson V J, Lekkerkerker H N W. Insights into phase transition kinetics from colloid science. Nature, 2002, 416: 811–815

    Article  ADS  Google Scholar 

  9. Vold R D, Vold M J. Colloid and Interface Chemistry. London: Addison-Wesley, 1983

    Google Scholar 

  10. von Smoluchowski M. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z Phys Chem, 1917, 92: 129–168

    Google Scholar 

  11. Sun Z W, Liu J, Xu S H. Study on improving the turbidity measurement of the absolute coagulation rate constant. Langmuir, 2006, 22: 4946–4951

    Article  MathSciNet  Google Scholar 

  12. Gillies G, Lin W, Borkovec M. Charging and aggregation of positively charged latex particles in the presence of anionic polyelectrolytes. J Phys Chem B, 2007, 111: 8626–8633

    Article  Google Scholar 

  13. Sonntag H, Strenge K. Coagulation Kinetics and Structure Formation. Berlin: VEB Deutscher Verlag der Wissenschaften, 1987

    Google Scholar 

  14. Hunter R J. Zeta Potential in Colloid Science: Principles and Applications. London: Academic Press, 1981

    Google Scholar 

  15. Fuchs N. Über die Stabilität und Aufladung der Aerosole. Z Phys, 1934, 89: 736–743

    Article  ADS  Google Scholar 

  16. Han M Y, Lee H K, Lawler D F, et al. Collision efficiency factor in Brownian coagulation (αBr) including hydrodynamics and interparticle forces. Water Sci Technol, 1997, 36: 69–75

    Google Scholar 

  17. Han M Y, Lee H K. Collision efficiency factor in Brownian coagulation (αBr): Calculation and experimental verification. Colloids Surf A, 2002, 202: 23–31

    Article  Google Scholar 

  18. Mellema M, van Opheusden J H J, van Vliet T. Relating colloidal particle interactions to gel structure using Brownian dynamics simulations and the Fuchs stability ratio. J Chem Phys, 1999, 111: 6129–6135

    Article  ADS  Google Scholar 

  19. Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett, 1970, 24: 156–159

    Article  ADS  Google Scholar 

  20. Ashkin A, Dziedzic J M, Brorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett, 1986, 11: 288–290

    Article  ADS  Google Scholar 

  21. Sun Z W, Xu S H, Dai G L, et al. A microscopic approach to studying colloidal stability. J Chem Phys, 2003, 119: 2399–2405

    Article  ADS  Google Scholar 

  22. Xu S H, Lou L R, Li Y M, et al. On the aggregation kinetics of two particles trapped in an optical tweezers. Colloids Surf A, 2005, 255: 159–163

    Article  Google Scholar 

  23. Xu S H, Li Y M, Lou L R, et al. Computer simulation of the collision frequency of two particles in optical tweezers. Chin Phys, 2005, 14: 382–385

    Article  ADS  Google Scholar 

  24. Sun Z W, Xu S H, Liu J, et al. Improved procedure on the microscopic approach to determine colloidal stability. J Chem Phys, 2005, 122: 184904

    Article  ADS  Google Scholar 

  25. Xu S H, Sun Z W. Computer simulation on the collision-sticking dynamics of two colloidal particles in an optical trap. J Chem Phys, 2007, 126: 144903

    Article  ADS  Google Scholar 

  26. Elimelech M, Gregory J, Jia X, et al. Particle Deposition and Aggregation. Oxford: Butterworth-Heinemann, 1995

    Google Scholar 

  27. Lichtenbelt J W T, Ras H J M C, Wiersema P H. Turbidity of coagulating lyophobic sols. J Colloid Interface Sci, 1974, 46: 522–527

    Article  Google Scholar 

  28. Holthoff H, Schmitt A, Fernandez-Barbero A, et al. Measurement of absolute coagulation rate constants for colloidal particles: Comparison of single and multiparticle light scattering techniques. J Colloid Interface Sci, 1997, 192: 463–470

    Article  Google Scholar 

  29. Puertas A M, de las Nieves F J. A new method for calculating kinetic constants with the Rayleigh-Gans-Debye approximation from turbidity measurements. J Phys-Condens Matter, 1997, 9: 3313–3320

    Article  ADS  Google Scholar 

  30. Xu S H, Liu J, Sun Z W. Optical factors determined by the T-matrix method in turbidity measurement of absolute coagulation rate constants. J Colloid Interface Sci, 2006, 304: 107–114

    Article  Google Scholar 

  31. Xu S H, Sun Z W. Progress in coagulation rate measurements of colloidal dispersions. Soft Matter, 2011, 7: 11298–11308

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiWei Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Xu, S. Two examples of using physical mechanics approach to evaluate colloidal stability. Sci. China Phys. Mech. Astron. 55, 933–939 (2012). https://doi.org/10.1007/s11433-012-4725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4725-6

Keywords

Navigation