Advertisement

Science China Physics, Mechanics and Astronomy

, Volume 55, Issue 8, pp 1422–1426 | Cite as

1→N quantum controlled phase gate realized in a circuit QED system

  • GuiLong Gao
  • GenChang Cai
  • ShouSheng Huang
  • LongYing Tang
  • WenJing Gu
  • MingFeng Wang
  • NianQuan JiangEmail author
Article

Abstract

We propose an effective method to realize the quantum phase gate of one qubit simultaneously controlling N qubits. We use the system in which the transmon qubits are capacitively coupled to a superconducting transmission line resonator driven by a strong microwave field. In our scheme, the phase gate can be realized in a time (nanosecond-scale) much shorter than decoherence time (microsecond-scale), and it is more immune to the 1/f charge noise and has longer dephasing time due to the favorable properties of the transmon qubits in the system.

Keywords

phase gate transmon qubit transmission line resonator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kiesel N, Schmid C, Weber U, et al. Linear optics controlled-phase gate made simple. Phys Rev Lett, 2005, 95: 210505ADSCrossRefGoogle Scholar
  2. 2.
    Wang H F, Shao X Q, Zhao Y F, et al. Scheme for implementing linear optical quantum iSWAP gate with conventional photon detectors. JOSA B, 2010, 27: 27–31ADSCrossRefGoogle Scholar
  3. 3.
    Isenhower L, Urban E, Zhang X, et al. Demonstration of a neutral atom controlled-NOT quantum gate. Phys Rev Lett, 2010, 104: 010503ADSCrossRefGoogle Scholar
  4. 4.
    Duan, L M, Wang B, Kimble H J. Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys Rev A, 2005, 72: 032333ADSCrossRefGoogle Scholar
  5. 5.
    He Y, Jiang N Q, Ji Y Y. One-dimensional cluster state generated in one step via one cavity. Opt Commun, 2010, 283: 1979–1983ADSCrossRefGoogle Scholar
  6. 6.
    Monroe C, Meekhof D M, King B E, et al. Demonstration of a fundamental quantum logic gate. Phys Rev Lett, 1995, 75: 4714–4717MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Jones J A, Mosca M, Hansen R H. Implementation of a quantum search algorithm on a quantum computer. Nature, 1998, 393: 344–346ADSCrossRefGoogle Scholar
  8. 8.
    Fushman I, Englund D, Faraon A, et al. Controlled phase shifts with a single quantum dot. Science, 2008, 320: 769–772ADSCrossRefGoogle Scholar
  9. 9.
    Yang C P, Chu S I. Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys Rev A, 2003, 67: 042311ADSCrossRefGoogle Scholar
  10. 10.
    Yang C P, Chu S I, Han S. Quantum information transfer and entanglement with SQUID qubits in cavity QED: A dark-state scheme with tolerance for nonuniform device parameter. Phys Rev Lett, 2004, 92: 117902ADSCrossRefGoogle Scholar
  11. 11.
    Leek P J, Filipp S, Maurer P, et al. Using sideband transitions for two-qubit operations in superconducting circuits. Phys Rev B, 2009, 79: 180511ADSCrossRefGoogle Scholar
  12. 12.
    Majer J, Chow J, Gambetta J, et al. Coupling superconducting qubits via a cavity bus. Nature, 2007, 449: 443–447ADSCrossRefGoogle Scholar
  13. 13.
    Plantenberg J H, de Groo P C, Harmans C J P M, et al. Demonstration of controlled-NOT quantum gates on a pair of super-conducting quantum bits. Nature, 2007, 447: 836–839ADSCrossRefGoogle Scholar
  14. 14.
    Yamamoto T, Pashkin Y A, Astafiev O, et al. Demonstration of conditional gate operation using superconducting charge qubits. Nature, 2003, 425: 941–944ADSCrossRefGoogle Scholar
  15. 15.
    Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation. Phys Rev A, 1995, 52: 3457–3467ADSCrossRefGoogle Scholar
  16. 16.
    Yang C P, Han S. n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator. Phys Rev A, 2005, 72: 032311ADSCrossRefGoogle Scholar
  17. 17.
    Yang C P, Zheng S B, Franco N. Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity. Phys Rev A, 2010, 82: 062326ADSCrossRefGoogle Scholar
  18. 18.
    Lin X M, Zhou Z W, Ye M Y, et al. One-step implementation of a multiqubit controlled-phase-flip gate. Phys Rev A, 2006, 73: 012323ADSCrossRefGoogle Scholar
  19. 19.
    Yang C P, Han S. Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED. Phys Rev A, 2006, 73: 032317ADSCrossRefGoogle Scholar
  20. 20.
    Yang C P, Liu Y X, Nori F. Phase gate of one qubit simultaneously controlling n qubits in a cavity. Phys Rev A, 2010, 81: 062323ADSCrossRefGoogle Scholar
  21. 21.
    Yang C P. A proposal for implementing an n-qubit controlled-rotation gate with three-level superconducting qubit systems in cavity QED. J Phys-Condens Matter, 2011, 23: 225702ADSCrossRefGoogle Scholar
  22. 22.
    Grover L K. Quantum computers can search rapidly by using almost any transformation. Phys Rev Lett, 1998, 80: 4329–4332ADSCrossRefGoogle Scholar
  23. 23.
    Shor P W. Scheme for reducing decoherence in quantum computer memory. Phys Rev A, 1995, 52: R2493–R2496ADSCrossRefGoogle Scholar
  24. 24.
    Braunstein S L, Bužek V, Hillery M. Quantum-information distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit. Phys Rev A, 2001, 63: 052313ADSCrossRefGoogle Scholar
  25. 25.
    Scaronascaronura M, Buzcaronek V. Multiparticle entanglement with quantum logic networks: Application to cold trapped ions. Phys Rev A, 2001, 64: 012305ADSCrossRefGoogle Scholar
  26. 26.
    Jiang N Q, Zheng Y Z. General Einstein-Podolsky-Rosen-type entanglement of continuous variables for bosons. Phys Rev A, 2006, 74: 012306MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Jiang N Q, Jing B Q, Zhang Y, et al. Common eigenstates of many-particle compatible observables. Europhys Lett, 2008, 84: 14002ADSCrossRefGoogle Scholar
  28. 28.
    Blais A, Huang R S, Wallraff A, et al. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys Rev A, 2004, 69: 062320ADSCrossRefGoogle Scholar
  29. 29.
    Blais A, Gambetta J, Wallraff A, et al. Quantum-information processing with circuit quantum electrodynamics. Phys Rev A, 2007, 75: 032329ADSCrossRefGoogle Scholar
  30. 30.
    Wu C W, Han Y, Li H Y, et al. Fast quantum phase gate in a small-detuning circuit QED model. Phys Rev A, 2010, 82: 014303ADSCrossRefGoogle Scholar
  31. 31.
    Koch J, Yu T M, Gambetta J, et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys Rev A, 2007, 76: 042319ADSCrossRefGoogle Scholar
  32. 32.
    Schreier J A, Houck A A, Koch J, et al. Suppressing charge noise decoherence in superconducting charge qubits. Phys Rev B, 2008, 77: 180502ADSCrossRefGoogle Scholar
  33. 33.
    DiCarlo L, Chow J, Gambetta J, et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature, 2009, 460: 240–244ADSCrossRefGoogle Scholar
  34. 34.
    Makhlin Y, Schön G, Shnirman A. Quantum-state engineering with Josephson-junction devices. Rev Mod Phys, 2001, 73: 357–400ADSCrossRefGoogle Scholar
  35. 35.
    Clarke J, Wilhelm F K. Superconducting quantum bits. Nature, 2008, 453: 1031–1042ADSCrossRefGoogle Scholar
  36. 36.
    Sørensen A, Mølmer K. Entanglement and quantum computation with ions in thermal motion. Phys Rev A, 2000, 62: 022311ADSCrossRefGoogle Scholar
  37. 37.
    Wang Y D, Zhang P, Zhou D L, et al. Fast entanglement of two charge-phase qubits through nonadiabatic coupling to a large Josephson junction. Phys Rev B, 2004, 70: 224515ADSCrossRefGoogle Scholar
  38. 38.
    Zheng S B. Quantum-information processing and multiatom-entanglement engineering with a thermal cavity. Phys Rev A, 2002, 66: 060303ADSCrossRefGoogle Scholar
  39. 39.
    DiCarlo L, Reed M, Sun L, et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature, 2010, 467: 574–578ADSCrossRefGoogle Scholar
  40. 40.
    Yang C P. Quantum information transfer with superconducting flux qubits coupled to a resonator. Phys Rev A, 2010, 82: 054303ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • GuiLong Gao
    • 1
  • GenChang Cai
    • 2
  • ShouSheng Huang
    • 1
  • LongYing Tang
    • 1
  • WenJing Gu
    • 1
  • MingFeng Wang
    • 1
  • NianQuan Jiang
    • 1
    Email author
  1. 1.College of Physics and Electric InformationWenzhou UniversityWenzhouChina
  2. 2.College of MusicWenzhou UniversityWenzhouChina

Personalised recommendations