Skip to main content
Log in

Non-zero quantum discord at finite temperature

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We investigate theoretically the quantum discord dynamics of a two-qubit composite system subject to a common finite- temperature reservoir by solving the Born-Markovian master equation analytically. The ultimate quantum discord, however, exhibits a relatively high stable value associated with the reservoir temperature despite the permanent disappearance of entanglement simultaneously. Further analysis shows that the unique characteristic depends strongly on the off-diagonal non-zero elements of the density matrix. Our result manifests the greater robustness of quantum discord compared with entanglement, which may be helpful in quantum-information technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Q, Goebel A, Pan J W, et al. Experimental quantum teleportation of a two-qubit composite system. Nat Phys, 2006, 2: 678–682

    Article  Google Scholar 

  2. Horodecki R, Horodecki P, Horodecki K, et al. Quantum entanglement. Rev Mod Phys, 2009, 81: 865–942

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  4. Yu T, Eberly H J. Quantum open system theory: Bipartite aspects. Phys Rev Lett, 2006, 97: 140403

    Article  ADS  Google Scholar 

  5. Maziero J, Werlang T, Fanchini F F, et al. System-reservoir dynamics of quantum and classical correlations. Phys Rev A, 2010, 81: 022116

    Article  ADS  Google Scholar 

  6. Werlang T, Souza S, Fanchini F F, et al. Robustness of quantum discord to sudden death. Phys Rev A, 2009, 80: 024103

    Article  ADS  Google Scholar 

  7. Datta A, Shaji A, Caves C M. Quantum discord and the power of one qubit. Phys Rev Lett, 2008, 100: 050502

    Article  ADS  Google Scholar 

  8. Lanyon B P, Barbieri M, Almeida M P, et al. Experimental quantum computing without entanglement. Phys Rev Lett, 2008, 101: 200501

    Article  ADS  Google Scholar 

  9. Ferraro A, Aolita L, Cavalcanti D, et al. Almost all quantum states have nonclassical correlations. Phys Rev A, 2010, 81: 052318

    Article  ADS  Google Scholar 

  10. Luo S L. Quantum discord for two-qubit systems. Phys Rev A, 2008, 77: 042303

    Article  ADS  Google Scholar 

  11. Ali M, Rau A R P, Alber G. Quantum discord for two-qubit X states. Phys Rev A, 2010, 81: 042105

    Article  ADS  Google Scholar 

  12. Sarandy M S. Classical correlation and quantum discord in critical systems. Phys Rev A, 2009, 80: 022108

    Article  ADS  Google Scholar 

  13. Luo S L. Using measurement-induced disturbance to characterized correlations as classical or quantum. Phys Rev A, 2008, 77: 022301

    Article  ADS  Google Scholar 

  14. Dakic B, Vedral V, Brukner C. Necessary and sufficient condition for non-zero quantum discord. Phys Rev Lett, 2010, 105: 190502

    Article  ADS  Google Scholar 

  15. Luo S L, Fu S. Geometric measure of quantum discord. Phys Rev A, 2010, 82: 034302

    Article  MathSciNet  ADS  Google Scholar 

  16. Xu J S, Xu X Y, Guo G C, et al. Experimental investigation of classical and quantum correlations under decoherence. Nat Commun, 2010, 1: 7

    Google Scholar 

  17. Pinto D O, Celeri L C, Auccaise R, et al. Nonclassical correlation in NMR quadrupolar systems. Phys Rev A, 2010, 81: 062118

    Article  ADS  Google Scholar 

  18. Fanchini F F, Werlang T, Brasil C A, et al. Non-markovian dynamics of quantum discord. Phys Rev A, 2010, 81: 052107

    Article  ADS  Google Scholar 

  19. Giorda P, Paris M G A. Gaussian quantum discord. Phys Rev Lett, 2010, 105: 020503

    Article  ADS  Google Scholar 

  20. Mazzola L, Piilo J, Maniscalco S. Sudden transition between classical and quantum decoherence. Phys Rev Lett, 2010, 104: 200401

    Article  MathSciNet  ADS  Google Scholar 

  21. Lang M D, Caves C M. Quantum discord and the geometry of Bell-diagonal states. Phys Rev Lett, 201, 105: 150501

  22. Li B, Wang Z X, Fei S M. Quantum discord and geometry for a class of two-qubit states. Phys Rev A, 2011, 83: 022321

    Article  ADS  Google Scholar 

  23. Wootters W K. Entanglement of formation of an arbitrary state of two qubits. Phys Rev Lett, 1998, 80: 2245–2248

    Article  ADS  Google Scholar 

  24. Liu B Q, Shao B, Zou J. Quantum discord for a central two qubit system coupled to an XY-spin-chain environment. Phys Rev A, 2010, 82: 062119

    Article  ADS  Google Scholar 

  25. Ollivier H, Zurek W H. Quantum discord: A measure of the quantum of correlations. Phys Rev Lett, 2001, 88: 017901

    Article  ADS  Google Scholar 

  26. Ficek Z, Tanas R. Entangled states and collective nonclassical effects in two-atom systems. Phys Rep, 2002, 372: 369–443

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangYang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Li, J. & Li, X. Non-zero quantum discord at finite temperature. Sci. China Phys. Mech. Astron. 55, 815–821 (2012). https://doi.org/10.1007/s11433-012-4710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4710-0

Keywords

Navigation