Skip to main content
Log in

Jet magnetically accelerated from disk-corona around a rotating black hole

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A jet acceleration model for extracting energy from disk-corona surrounding a rotating black hole (BH) is proposed. In the disk-corona scenario, we obtain the ratio of the power dissipated in the corona to the total for such disk-corona system by solving the disk dynamics equations. The analytical expression of the jet power is derived based on the electronic circuit theory of the magnetosphere. It is shown that jet power increases with the increasing BH spin, and concentrates in the inner region of the disk-corona. In addition, we use a sample consisting of 37 radio loud quasars to explore their jet production mechanism, and show that our jet formation mechanism can simulate almost all sources with high power jet, which fails to be explained by the Blandford-Znajek (BZ) process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Livio M, Ogilvie G I, Pringle J E. Extracting energy from black holes: The relative importance of the Blandford-Znajek mechanism. Astrophys J, 1999, 512: 100–104

    Article  ADS  Google Scholar 

  2. Meier D L. A magnetically switched, rotating black hole model for the production of extragalactic radio jets and the Fanaroff and Riley class division. Astrophys J, 1999, 522: 753–766

    Article  ADS  Google Scholar 

  3. Lovelace R V E. Dynamo model of double radio sources. Nature, 1976, 262: 649–652

    Article  ADS  Google Scholar 

  4. Blandford R D, Znajek R L. Electromagnetic extraction of energy from Kerr black holes. Mon Not R Astron Soc, 1977, 179: 433–456

    ADS  Google Scholar 

  5. Blandford R D, Payne D G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon Not R Astron Soc, 1982, 199: 883–903

    ADS  MATH  Google Scholar 

  6. Lovelace R V, Eoldoba A V, Ustyugova G V, et al. Poynting jets from accretion disks. Astrophys J, 2002, 572: L445–L448

    Article  ADS  Google Scholar 

  7. Macdonald D, Thorne K S. Black-hole electrodynamics—an absolutespace/universal-time formulation. Mon Not R Astron Soc, 1982, 198: 345–382

    MathSciNet  ADS  MATH  Google Scholar 

  8. Ghosh P, Abramowicz M A. Electromagnetic extraction of rotational energy from disc fed black holes—The strength of the Blandford-Znajek process. Mon Not R Astron Soc, 1997, 292: 887–895

    ADS  Google Scholar 

  9. Li L X. A toy model for Blandford-Znajek mechanism. Phys Rev D, 2000, 61: 0840161–0840167

    Google Scholar 

  10. Li L X, Pacy’nski B. Extracting energy from accretion into Kerr black hole. Astrophys J, 2000, 534: L197–L200

    Article  ADS  Google Scholar 

  11. Li L X. Accretion disk torqued by a black hole. Astrophys J, 2002, 567: 463–476

    Article  ADS  Google Scholar 

  12. Li L X. Observational signatures of the magnetic connection between a black hole and a disk. Astron Astrophys, 2002, 392: 469–472

    Article  ADS  Google Scholar 

  13. Romanova M M, Ustyugova G V, Koldoba A V, et al. Dynamics of magnetic loops in the coronae of accretion disks. Astrophys J, 1998, 500: 703–713

    Article  ADS  Google Scholar 

  14. Tout C A, Pringle J E. Can a disk dynamo generate large-scale magnetic fields? Mon Not R Astron Soc, 1996, 281: 219–255

    ADS  Google Scholar 

  15. Narayan R, Yi I. Advection-dominated accretion: Self-similarity and bipolar outflows. Astrophys J, 1994, 444: 231–243

    Article  ADS  Google Scholar 

  16. Narayan R, Yi I. Advection-dominated accretion: Underfed black holes and neutron stars. Astrophys J, 1995, 452: 710–735

    Article  ADS  Google Scholar 

  17. Merloni A, Fabian A C. Coronal outflow dominated accretion discs: A new possibility for low-luminosity black holes? Mon Not R Astron Soc, 2002, 332: 165–175

    Article  ADS  Google Scholar 

  18. Gong X L, Li L X, Ma R Y. A disc-corona model for a rotating black hole. Mon Not R Astron Soc, 2012, 420: 1415–1422

    Article  ADS  Google Scholar 

  19. Balbus S A, Hawley J F. Instability, turbulence, and enhanced transport in accretion disks. Rev Mod Phys, 1998, 70: 1–53

    Article  ADS  Google Scholar 

  20. Novikov I D, Thorne K S. Astrophysics of black holes. In: Dewitt C, Dewitt B S, eds. Black Holes. New York: Gordon and Breach, 1999

    Google Scholar 

  21. Page D N, Thorne K S. Disk-accretion onto a black hole: Time-averaged structure of accretion disk. Astrophys J, 1974, 191, 499–506

    Article  ADS  Google Scholar 

  22. Zdziarski A A, Lubinski P, Smith D A. Correlation between Compton reflection and X-ray slope in Seyferts and X-ray binaries. Mon Not R Astron Soc, 1999, 303: L11–L15

    Article  ADS  Google Scholar 

  23. Thorne K S, Price R H, Macdonald D A. Black Holes: The Membrane Paradigm. New Haven: Yale University Press, 1986

    Google Scholar 

  24. Moderski R, Sikora M, Lasota J P. On black hole spins and dichotomy of quasars. In: Ostrowski M, Sikora M, Madejski G, eds. Relativistic Jets in AGNs. Krakow: Jagiellonian University Press, 1997. 110–114

    Google Scholar 

  25. Willott C J, Rawlings S, Blundell K M, et al. The emission line—radio correlation for radio sources using the 7C Redshift Survey. Mon Not R Astron Soc, 1999, 309: 1017–1033

    Article  ADS  Google Scholar 

  26. Punsly B. An independent derivation of the Oxford jet kinetic luminosity formula. Astrophys J, 2005, 623: L9–L12

    Article  ADS  Google Scholar 

  27. Liu Y, Jiang D R, Gu M F. The jet power, radio loudness, and black hole mass in radio-loud active galactic nuclei. Astrophys J, 2006, 637: 669–681

    Article  ADS  Google Scholar 

  28. Gu M F, Cao XW, Jiang D R. On the masses of black holes in radio-loud quasars. Mon Not R Astron Soc, 2001, 327: 1111–1115

    Article  ADS  Google Scholar 

  29. Woo J H, Urry M C. AGN black hole masses and bolometric luminosities. Astrophys J, 2002, 579: 530–544

    Article  ADS  Google Scholar 

  30. Kaspi S, Smith P S, Netzer H, et al. Reverberation measurements for 17 quasars and the size-mass-luminosity relations in active galactic nuclei. Astrophys J, 2000, 533: 631–649

    Article  ADS  Google Scholar 

  31. Blandford R D, Begelman M C. On the fate of gas accreting at a low rate on to a black hole. Mon Not R Astron Soc, 1999, 303: L1–L5

    Article  ADS  Google Scholar 

  32. Merloni A, Fabian A C. Thunderclouds and accretion discs: A model for the spectral and temporal variability of Seyfert 1 galaxies. Mon Not R Astron Soc, 2001, 328: 958–968

    Article  ADS  Google Scholar 

  33. Li L X. Extracting energy from black hole through transition region. Astrophys J, 2000, 540: L17–L20

    Article  ADS  Google Scholar 

  34. Reynolds C S, Garofalo D, Begelman M C. Trapping of magnetic flux by the plunge region of a black hole accretion disk. Astrophys J, 2006, 651: 1023–1030

    Article  ADS  Google Scholar 

  35. Agol E, Krolik J H. Magnetic stress at the marginally stable orbit: Altered disk structure, radiation, and black hole spin evolution. Astrophys J, 2000, 528: 161–170

    Article  ADS  Google Scholar 

  36. Gammie C F. Efficiency of magnetized thin accretion disks in the Kerr metric. Astrophys J, 1999, 522: L57–L60

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoLong Gong.

Additional information

Recommended by ZHU ZongHong (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, X., Li, L. Jet magnetically accelerated from disk-corona around a rotating black hole. Sci. China Phys. Mech. Astron. 55, 880–887 (2012). https://doi.org/10.1007/s11433-012-4705-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4705-x

Keywords

Navigation