Skip to main content
Log in

Optimization of the MUSCL scheme by dispersion and dissipation

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A second-order optimized monotonicity-preserving MUSCL scheme (OMUSCL2) is developed based on the dispersion and dissipation optimization and monotonicity-preserving technique. The new scheme (OMUSCL2) is simple in expression and is easy for use in CFD codes. Compared with the original second-order or third-order MUSCL scheme, the new scheme shows nearly the same CPU cost and higher resolution to shockwaves and small-scale waves. This new scheme has been tested through a set of one-dimensional and two-dimensional tests, including the Shu-Osher problem, the Sod problem, the Lax problem, the two-dimensional double Mach reflection and the RAE2822 transonic airfoil test. All numerical tests show that, compared with the original MUSCL schemes, the new scheme causes fewer dispersion and dissipation errors and produces higher resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harten A. High resolution schemes for hyperbolic conservation laws. J Comput Phys, 1983, 49: 357–393

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Fu D X. Direct numerical simulation of compressible turbulence. Beijing: Science Press, 2010

    Google Scholar 

  3. Cada M, Torrilhon M. Compact third-order limiter functions for finite volume methods. J Comput Phys, 2009, 228: 4118–4145

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Sweby P K. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal, 1984, 21: 995–1011

    Article  MathSciNet  MATH  Google Scholar 

  5. Van Leer B. Towards the ultimate conservation difference scheme V. A second-order sequel to Godunov’s Method. J Comput Phys, 1979, 32: 101–136

    Article  ADS  Google Scholar 

  6. Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatory shock-capturing schemes III. J Comput Phys, 1987, 71: 231–303

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Serna S, Marquina A. Power ENO methods: A fifth-order accurate weighted power ENO method. J Comput Phys, 2004, 194: 632–658

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes. J Comput Phys, 1996, 126: 202–228

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Shu C W. TVB uniformly high-order schemes for conservation laws. Math Comput, 1987, 49: 105–121

    Article  MATH  Google Scholar 

  10. Suresh A, Huynh H T. Accurate monotonicity-preserving schemes with Runge-Kutta time stepping. J Comput Phys, 1997, 136: 83–99

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Christopher K W T, Webb J C. Dispersion-relation-preserving finite difference schemes for computational acoustics. J Comput Phys, 1993, 107(2): 262–281

    Article  MathSciNet  MATH  Google Scholar 

  12. Lele S K. Compact finite difference schemes with spectral-like resolution. J Comput Phys, 1992, 103: 16–42

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Shu C W, Osher S. Efficient implementation of essentially non-oscillatory schemes. J Comput Phys, 1989, 83: 32–78

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Godunov C K. Difference method for computing the discontinuity in fluid dynamics. SB Math+, 1959, 47(3): 271

    MathSciNet  Google Scholar 

  15. Jennings G. Discrects shock. Comm Pore Appl Math. 1974, 27: 25–37

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Fu D X, Ma Y W. Computational Fluid Dynamics (in Chinese). Beijing: High Education Press, 2002

    Google Scholar 

  17. He Z W, Li X L, Fu D X, et al. A 5th order monotonicity-preserving upwind compact difference scheme. Sci China-Phys Mech Astron, 2011, 54: 511–522

    Article  ADS  Google Scholar 

  18. Daru V, Tenaud C. High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations. J Comput Phys, 2004, 193: 563–594

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Steger J L, Warming R F. Flux vector splitting of the inviscid gasdynamic equations with applications to finite difference methods. J Comput Phys, 1981, 40: 263–293

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Van Leer B. Flux-vector Splitting for the Euler Equations. Technical Report ICASE 82–30, NASA Langley Research Center, USA, 1982

    Google Scholar 

  21. Roe P L. Approximate Riemann solvers, parameter vectors and difference schemes. J Comput Phys, 1981, 43: 357–372

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Liou M S, Steffen J C J. A new flux splitting scheme. J Comput Phys, 1993, 107: 23–39

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Kim K H, Lee J H, Rho O H. An improvement of AUSM schemes by introducing the pressure-based weight function. Comput Fluids, 1998, 27(3): 311–346

    Article  MathSciNet  MATH  Google Scholar 

  24. Kim K H, Lee J H, Rho O H. An improvement of AUSM schemes by introducing the pressure-based weight function. In: The Fifth Annual Conference of the Computational Fluid Dynamics Society of Canada (CFD 97), 1997. 5: 14-33–14-38

    Google Scholar 

  25. Shu C W, Dinshaw S B. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J Comput Phys, 2000, 160: 405–452

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Sod G A. A survey of several finite difference methods for system of non-linear hyperbolic conservation law. J Comput Phys, 1978, 21(1): 1–31

    Article  MathSciNet  ADS  Google Scholar 

  27. Shu C W. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws. NASA/CR-97-206253, ICASE Report, 1997: 65–97

  28. Toro E F. Riemann Solvers and Numerical Methods for Fluid Dynamics. 2nd. Berlin: Springer, 1997

    Google Scholar 

  29. Woodward P, Colella P. The numerical simulation of two-dimens ional fluid flow with strong shocks. J Comput Phys, 1984, 54: 115–173

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Cook P H, McDonal M A, Firmin M C P. Aerofoil RAE2822-Pressure Distributions, and Boundary Layer and Wake measurements. Experimental Data base for Computer Program Assessment, AGARD Report AR 138, 1979

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinLiang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leng, Y., Li, X., Fu, D. et al. Optimization of the MUSCL scheme by dispersion and dissipation. Sci. China Phys. Mech. Astron. 55, 844–853 (2012). https://doi.org/10.1007/s11433-012-4702-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4702-0

Keywords

Navigation