Skip to main content
Log in

Contact binaries: II. The importance of deformation caused by rotation and tides to the light curve of a contact binary

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The theoretical light curves of contact binaries are calculated with and without putting in the contact binary evolution model. Firstly, we do not use the contact binary evolution model. A comparison of the light curve is performed with and without the deformation caused by rotation and tides. It shows that the light curve presents many differences, especially on the bottom and top. Secondly, we adopt the contact binary model [Huang R Q, et al. Chin J Astron Astrophys, 2007, 7: 235–244; Song H F, et al. Chin J Astron Astrophys, 2007, 7: 539–550] and compute the theoretical light curve with and without rotational and tidal effects by studying three binary systems (with low-, intermediate- and high-mass components). The bottom and top of the theoretical light curves are discussed and compared to observations. The results show that taking into account the rotational effect has a better agreement with observations than without it. Therefore, the deformation of the light curve of contact binaries caused by rotation and tides is very important. Meanwhile, the rotational and tidal effect can advance the start of the semi-detached, contact phase and the time of mass-reversal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herrero A, Kudritzki R P, Vilchez J M, et al. Intrinsic parameters of galactic luminous OB stars. Astron Astrophys, 1992, 261: 209–234

    ADS  Google Scholar 

  2. Charbonnel C. Clues for non-standard mixing on the red giant branch from C-12/C-13 and C-12/N-14 ratios in evolved stars. Astron Astrophys, 1994, 282: 811–820

    ADS  Google Scholar 

  3. Charbonnel C. A consistent explanation for 12C/13C, 7Li and 3He anomalies in red giant stars. Astrophys J, 1995, 453: L41–L44

    Article  ADS  Google Scholar 

  4. Walborn N R. The OBN and OBC stars. Astrophys J, 1976, 205: 419–425

    Article  ADS  Google Scholar 

  5. Fransson C, Cassatella A, Gilmozzi R, et al. Narrow ultraviolet emission lines from SN 1987A—Evidence for CNO processing in the progenitor. Astrophys J, 1989, 336: 429–441

    Article  ADS  Google Scholar 

  6. Kippenhahn R, Thomas H C. A simple method for the solution of the stellar structure equations including rotation and tidal forces. In: Stellar Rotation, Proceedings of IAU Colloq. 4. Columbus: Gordon and Breach Science Publishers, 1970. 20

    Google Scholar 

  7. Endal A S, Sofia S. The evolution of rotating stars. I. Method and exploratory calculations for a 7-solar-mass star. Astrophys J, 1976, 210: 184–198

    Article  ADS  Google Scholar 

  8. Pinsonneault M H, Kawaler S D, Sofia S, et al. Evolutionary models of the rotating sun. Astrophys J, 1989, 338: 424–452

    Article  ADS  Google Scholar 

  9. Maeder A, Meynet G. The evolution of rotating stars. Annu Rev Astron Astrophys, 2000, 38: 143–190

    Article  ADS  Google Scholar 

  10. Langer N, Fliegner J, Heger A, et al. Nucleosynthesis in rotating massive stars. Nucl Phys A, 1997, 621: 457–466

    Article  ADS  Google Scholar 

  11. Siess L, Livio M. On the rotational evolution of young low-mass stars. Astrophys J, 1997, 490: 785–791

    Article  ADS  Google Scholar 

  12. Huang R Q. Evolution of rotating binary stars. Astron Astrophys, 2004, 422: 981–986

    Article  ADS  MATH  Google Scholar 

  13. Luo C Q, Huang R Q. Contact binaries: I. An inspection of HSB contact binary model by comparison of relationships obtained from theoretical light curves with that from astronomical observations. Sci China-Phys Mecha Astron, 2012, 55(3): 553–560

    Article  ADS  Google Scholar 

  14. Huang R Q, Song H F, Bi S L. On the physical processes in contact binary systems. Chin J Astron Astrophys, 2007, 7: 235–244

    Article  ADS  Google Scholar 

  15. Song H F, Huang R Q, Bi S L. A model contact binary systems. Chin J Astron Astrophys, 2007, 7: 539–550

    Article  ADS  Google Scholar 

  16. Gorda S Y, Svechnikov M A. Determination of empirical massluminosity and mass-radius relations for main-sequence stars that are the components of eclipsing binary systems. Astron Rep, 1998, 42: 793–798

    ADS  Google Scholar 

  17. Drechsel H, Lorenz R, Mayer P. Solution of light curves with third light contribution—The eclipsing binaries LY Aurigae and AH Cephei reconsidered. Astron Astrophys, 1989, 221: 49–61

    ADS  Google Scholar 

  18. Bell S A, Adamson A J, Hilditch RW. Simultaneous differential photometry with the ST Andrews twin photometric telescope. II—The eclipsing binaries SX Aurigae and TT Aurigae. Mon Not Roy Astron Soc, 1987, 224: 649–673

    ADS  Google Scholar 

  19. Polushina T S. Analysis of brightness variations in the massive close binary system UU Cassiopeia. Astron Rep, 2002, 79: 900–907

    Article  ADS  Google Scholar 

  20. Antokhina E A, Kumsiashvili M I. Analysis of lightcurves of the eclipsing binary system Uu-Cassiopeiae. Soviet Astron, 1992, 36: 25–28

    ADS  Google Scholar 

  21. Leung C K, Schneider P D. Evolved contact systems of spectral type O. I. UW Canis Majoris. Astrophys J, 1978, 222: 924–930

    Article  ADS  Google Scholar 

  22. Lorenz R, Mayer P, Drechsel H. V606 Centauri: An early-type eclipsing contact binary. Astron Astrophys, 1999, 345: 531–546

    ADS  Google Scholar 

  23. Leung F R, Sistero R F, Zhai D S, et al. Revised UBV photometric solution of the early-type contact system BH Centauri. Astron J, 1984, 89: 872–875

    Article  ADS  Google Scholar 

  24. Deǧirmenci Ö L, Sezer C, Demircanet O, et al. The early type contact binary system V382 Cygni. Astron Astrophys, 1999, 134: 327–331

    ADS  Google Scholar 

  25. Terrell D, Munari U, Zwitter T, et al. The double supergiant binary OW Geminorum. Astron J, 2003, 126: 902–905

    Article  ADS  Google Scholar 

  26. Wilson R E, Rafert J B. A note on the statistics of early-type close binaries. Astrophys Space Sci, 1981, 76: 23–33

    Article  ADS  Google Scholar 

  27. Bell S A, Malcolm G J. RZ Pyxidis—an early-type marginal contact binary. Mon Not Roy Astron Soc, 1987, 227: 481–550

    ADS  Google Scholar 

  28. Hrivnak B J, Guinan E F, Dewarf E L, et al. An ultraviolet study of the short-period binary OO Aquilae. Astron J, 2001, 121: 1084–1090

    Article  ADS  Google Scholar 

  29. Kaluzny J. Determination of parameters of W UMa-type systems—V757 Cen, GW Cep, BX Peg, AH VIR. Acta Astron, 1984, 34: 217–224

    ADS  Google Scholar 

  30. Niarchos P G, Rovithis-Livaniou H, Rovithis P. The eclipsing binary GK Cephei—New BV photoelectric observations and light curves analysis. Astron Astrophys Suppl Ser, 1991, 88: 471–496

    ADS  Google Scholar 

  31. Kreiner J M, Rucinski S M, Zola S, et al. Physical parameters of components in close binary systems. I. Astron Astrophys, 2003, 412: 465–471

    Article  ADS  Google Scholar 

  32. Lafta S J, Grainger J F. New photoelectric observations of four W UMa systems—OO Aql, V839 Oph, V566 Oph, and SWLac. Astrophys Space Sci, 1985, 114: 23–118

    Article  ADS  Google Scholar 

  33. Rovithis P, Rovithis-Livaniou H. The eclipsing system ER Orionis. Astron Astrophys, 1986, 155: 46–50

    ADS  Google Scholar 

  34. Lafta S J, Grainger J F. A photoelectric study of the W UMa-system U Pegasi. Astrophys Space Sci, 1986, 121: 61–81

    Article  ADS  Google Scholar 

  35. Pribulla T, Kreiner J M, Tremko J. Catalogue of the field contact binary stars. Contrib Astron Observ Skalnaté Pleso, 2003, 33: 38–70

    ADS  Google Scholar 

  36. Malasan H L, Yamasaki A, Kitamura M. Synthetic analysis of light curves of the close binary system UZ Puppis. Astrophys Space Sci, 1989, 153: 269–272

    ADS  Google Scholar 

  37. Gürol B. Long term photometric and period study of AU Serpentis. New Astron, 2005, 10: 653–675

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ChangQing Luo or RunQian Huang.

Additional information

Contributed by HUANG RunQian (CAS Academician)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, C., Huang, R. Contact binaries: II. The importance of deformation caused by rotation and tides to the light curve of a contact binary. Sci. China Phys. Mech. Astron. 55, 899–906 (2012). https://doi.org/10.1007/s11433-012-4697-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4697-6

Keywords

Navigation