Skip to main content
Log in

Improved polyreference time domain method for modal identification using local or global noise removal techniques

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Modal identification involves estimating the modal parameters, such as modal frequencies, damping ratios, and mode shapes, of a structural system from measured data. Under the condition that noisy impulse response signals associated with multiple input and output locations have been measured, the primary objective of this study is to apply the local or global noise removal technique for improving the modal identification based on the polyreference time domain (PTD) method. While the traditional PTD method improves modal parameter estimation by over-specifying the computational model order to absorb noise, this paper proposes an approach using the actual system order as the computational model order and rejecting much noise prior to performing modal parameter estimation algorithms. Two noise removal approaches are investigated: a “local” approach which removes noise from one signal at a time, and a “global” approach which removes the noise of multiple measured signals simultaneously. The numerical investigation in this article is based on experimental measurements from two test setups: a cantilever beam with 3 inputs and 10 outputs, and a hanged plate with 4 inputs and 32 outputs. This paper demonstrates that the proposed noise-rejection method outperforms the traditional noise-absorption PTD method in several crucial aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ewins D J. Modal Testing: Theory, Practice and Applications. 2nd ed. Baldock, Hertfordshire, England: Research Studies Press, 2000

    Google Scholar 

  2. Maia N, Silva J, He J, et al. Theoretical and Experimental Modal Analysis. Taunton, Somerset, England: Research Studies Press, 1997

    Google Scholar 

  3. Allemang R J, Brown D L. A unified matrix polynomial approach to modal identification. J Sound Vib, 1998, 211(3): 301–322

    Article  ADS  MATH  Google Scholar 

  4. Cunha A, Caetano E. Experimental modal analysis of civil engineering structures. Sound Vib, 2006, (6): 12–20

  5. Allemang R J, Brown D L. Experimental modal analysis and dynamic component synthesis, vol. 3 modal parameter estimation. Technical Report Contract No. F33615-83-C-3218, AFWAL-TR-87-3069, USAF, 1987

  6. Braun S, Ram Y M. Determination of structural modes via the prony method: system order and noise induced poles. J Acoust Soc Am, 1987, 81: 1447–1459

    Article  ADS  Google Scholar 

  7. Brown D L, Witter M C. Review of recent developments in multiple-reference impact testing. Sound Vib, 2011, (1): 8–16

  8. Juang J N. Applied System Identification. Englewood Cliffs, NJ: PTR Prentice Hall, 1994

    MATH  Google Scholar 

  9. Van Overschee P, De Moor B. Subspace Identification for Linear System: Theory, Implementation, Applications. Dordrecht: Kluwer Academic Publishers, 1996

    Book  MATH  Google Scholar 

  10. Peeters B, De Roeck G. Stochastic system identification for operational modal analysis: A review. J Dyn Syst Measur Control, 2001, 123(4): 659–667

    Article  Google Scholar 

  11. Hu S-L J, Bao X X, Li H J. Model order determination and noise removal for modal parameter estimation. Mech Syst Signal Process, 2010, 24(6): 1605–1620

    Article  ADS  Google Scholar 

  12. Chu M T, Funderlic R E, Plemmons R J. Structured low rank approximation. Linear Algebra Appl, 2003, 366: 157–172

    Article  MathSciNet  MATH  Google Scholar 

  13. Markovsky I, Van Huffel S. Overview of total least squares methods. Signal Processing, 2007, 87(10): 2283–2302

    Article  MATH  Google Scholar 

  14. Heylen W, Lammens S, Sas P. Modal Analysis Theory and Testing. Leuven, Belgium: Katholieke Universiteit Leuven, 1997

    Google Scholar 

  15. Eckart G, Young G. The approximation of one matrix by another of lower rank. Psychometrika, 1936, 1: 211–218

    Article  MATH  Google Scholar 

  16. Cadzow J A. Signal enhancement—A composite property mapping algorithm. IEEE Trans Acoust Speech Signal Processing, 1988: 36(1): 49–62

    Article  MathSciNet  MATH  Google Scholar 

  17. Tufts D, Shah A. Estimation of a signal waveform from noisy data using low-rank approximation to a data matrix. IEEE Trans Signal Process, 1993, 41(4): 1716–1721

    Article  ADS  MATH  Google Scholar 

  18. De Moor B. Total least squares for affinely structured matrices and the noisy realization problem. IEEE Trans Signal Process, 1994, 42(11): 3104–3113

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XingXian Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, SL.J., Bao, X. & Li, H. Improved polyreference time domain method for modal identification using local or global noise removal techniques. Sci. China Phys. Mech. Astron. 55, 1464–1474 (2012). https://doi.org/10.1007/s11433-011-4625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4625-1

Keywords

Navigation