Skip to main content
Log in

The dispersion characteristics of the waves propagating in a spinning single-walled carbon nanotube

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

As the nano-motor becomes a mechanical reality, its prototype can be envisaged as nano-sized rotating machinery at a situation, albeit for different purposes, like that in the first half of the 20th century during which rotor dynamics has contributed to boosting machine power capacity. Accordingly, we take the benefit of hindsight to develop a classical framework of vibration analysis. Essentially, the equations of motion are formulated to cope with both the special carbon-nanotube properties and the first author’s previously developed spinning beam formalism, establishing a model satisfactorily verified by some available molecular dynamics (MD) data and classical spinning beam results extracted from the literature. The model is inexpensive based on continuum mechanics as an alternative to the less-flexible MD method for simulating wave motion of the spinning single-walled carbon nanotube, yielding several interesting phenomena, including the fall-off and splitting of the wave characteristic curves and the unexpected gyroscopic phase property. Potential applications are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

CNT length scale

A :

cross-sectional area

B :

CNT eight-coefficient bearing matrix

c s :

shear wave velocity \(\sqrt {\kappa G/\rho } \)

c o :

longitudinal wave velocity \(\sqrt {E/\rho } \)

c :

phase speed of shear wave in nonlocal Timoshenko beam \(c_s /\sqrt {\alpha '} \)

c :

phase speed of longitudinal wave in nonlocal Timoshenko beam \(c_o /\sqrt {\alpha '} \)

C :

bearing damping coefficient matrix

C xx , C xy , C yx , C yy :

bearing damping matrix coefficients

C :

CNT rotor dynamic matrix

e o :

CNT constant

E :

Young’s modulus

eiµ :

phase angular velocity \((\dot \phi _{xo} ,\dot \phi _{yo} )\) relative to spin Ω

eiθ :

phase of spin Ω relative to angular velocity \((\dot \phi _{xo} ,\dot \phi _{yo} )\) of cross-section

F x (z 1,2, t), F x (z 1,2, t):

bearing forces in x and y respectively, at location z 1 or z 2

G :

shear modulus =E / 2(1 + υ)

h :

wall thickness

I :

second moment of area

J :

rotary inertia = ρI

k :

wavenumber (rad/nm)

K :

bearing stiffness coefficient matrix

K xx , K xy , K yx , K yy :

bearing stiffness matrix coefficients

L :

length of CNT rotor

m :

mass per unit length =ρA

m α :

effective mass at wavenumber k \(m\sqrt {\alpha '} = \rho A\sqrt {\alpha '} \)

q :

ratio of beam rotation to translation

r g :

radius of gyration = \(\sqrt {I/A} \)

r :

length scale of wave =c o r g /c s

t :

time (ps)

T l :

kinetic energy of original Timoshenko beam

T trans,nl :

nonlocal elasticity-induced translational kinetic energy of nonlocal Timoshenko beam

T rot,nl :

nonlocal elasticity-induced rotational kinetic energy of nonlocal Timoshenko beam

T TB-E :

total kinetic energy of nonlocal Timoshenko beam = T l T trans,nl + T rot,nl + T S

T S :

kinetic energy of beam spin

V :

interlayer surface potential, Tersoff-Brenner or Lennard-Jones

w x (z 1,2, t), w x (z 1,2, t), \(\dot w_x \)(z 1,2, t), \(\dot w_x \)(z 1,2, t):

journal displacements velocities at z 1 or z 2

w o :

arbitrary constant translation amplitude

w xo , w yo :

centroidal translation in the respective, x o , y o axes

\(\dot w_{xo} ,\dot w_{yo} \) :

centroidal translational velocities in the respective, x o , y o axes

x, y, z :

fixed (inertial) coordinates (nm)

x o , y o , z o :

spinning (floating) coordinates (nm)

z 1, z 2 :

bearing locations

α′:

nonlocal k-wave factor = 1+η 2 k 2

α :

nonlocal elasticity operator =1−η 2 2 z

η :

Eringen’s nonlocal parameter =e o a

\(\dot \phi _{xo} \phi _{yo} ,\dot \phi _{yo} \phi _{xo} \) :

bending projection on spin axis

φ xo , φ yo :

cross-sectional bending rotation about the respective x o , y o axes

\(\dot \phi _{xo} ,\dot \phi _{yo} \) :

cross-sectional angular velocities of bending about the respective x o , y o axes

γ xo , γ yo :

shear deformations about the respective x o , y o axes

κ :

shear coefficient

λ :

wavelength (nm) =2π/k

Ω:

spinning velocity (rad/ps) and \(\Omega ' = \frac{\Omega } {{\omega _{cr} }} \)

Ωφ yo , Ωφ yo :

spin velocity projections in the cross section along respective x o and y o axes

ρ :

mass per unit volume (density)

υ :

Poisson’s ratio

ω :

wave frequency (rad/ps) and \(\omega ' = \frac{\omega } {{\omega _{cr} }} \)

ω cr :

critical frequency =c s /r g = c o /r

ω crα :

nonlocal critical frequency = \(\omega _{cr} /\sqrt {\alpha '} \)

ϖ xo :

angular velocity in x o

ϖ yo :

angular velocity in y o

ϖ zo :

angular velocity in z o axis

\(\square _{s\alpha }^2 \equiv \partial _z^2 - \frac{1} {{c_s^2 }}\alpha \partial _t^2 \) :

D’Alembertian for shear wave in nonlocal Timoshenko beam

\(\square _{o\alpha }^2 \equiv \partial _z^2 - \frac{1} {{c_o^2 }}\alpha \partial _t^2 \) :

D’Alembertian for longitudinal wave in nonlocal Timoshenko beam

t ↔(·):

once time derivative

2 t ↔(··):

twice time derivative

z , ∂ zo ,↔(′):

once space derivative

2 z , ∂ 2 zo ,↔(″):

twice space derivative

References

  1. Fennimore A M, Yuzvinsky T D, Han W Q, et al. Rotational actuators based on carbon nanotubes. Nature, 2003, 424: 408–410

    Article  ADS  Google Scholar 

  2. Kis A, Zettl A. Nanomechanics of carbon nanotubes. Phil Trans R Soc A, 2008, 366: 1592–1611

    Article  ADS  Google Scholar 

  3. Li X F, Wang B L. Vibrational modes of Timoshenko beams at small scales. Appl Phys Lett, 2009, 94: 101903

    Article  ADS  Google Scholar 

  4. Bonzair A, Tounsi A, Besseghier A, et al. The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. J Phys D-Appl Phys, 2008, 41: 225404

    Article  ADS  Google Scholar 

  5. Wang Q, Varadan V K. Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct, 2006, 15: 659–666

    Article  ADS  Google Scholar 

  6. Eringen A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys, 1983, 54: 4703–4710

    Article  ADS  Google Scholar 

  7. Adali S. Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model. Nano Lett, 2009, 9: 1737–1741

    Article  ADS  Google Scholar 

  8. Usuki T, Yogo K. Beam equations for multi-walled carbon nanotubes derived from Flügge shell theory. Proc R Soc A, 2009, 465: 1199–1226

    MathSciNet  MATH  Google Scholar 

  9. Natsuki T, Ni Q Q. Wave propagation in single- and multi-walled carbon nanotubes filled with fluids. J Appl Phys, 2007, 101: 034319

    Article  ADS  Google Scholar 

  10. Lu P, Lee H P, Lu C, et al. Dynamic properties of flexural beams using a nonlocal elasticity model. J Appl Phys, 2006, 99: 073510

    Article  ADS  Google Scholar 

  11. Chan K T, Wang X Q, So R M C, et al. Superposed standing waves in a Timoshenko beam. Proc R Soc A, 2002, 458: 83–108

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Wang L F, Hu H Y. Flexural wave propagation in single-walled carbon nanotubes. Phys Rev B, 2005, 71: 195412

    Article  ADS  Google Scholar 

  13. Timoshenko S, Gere J. Mechanics of Material. New York: Van Nostrand Reinhold Company, 1972

    Google Scholar 

  14. Chan K T, Stephen N G, Reid S R. Helical structure of the waves propagating in a spinning Timoshenko beam. Proc R Soc A, 2005, 461: 3913–3934

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Servantie J, Gaspard P. Rotational dynamics and friction in double-walled carbon nanotubes. Phys Rev Lett, 2006, 97: 0606234

    Article  Google Scholar 

  16. Zhang S, Liu W K, Ruoff R S. Atomistic simulations of double-walled carbon nanotubes (DWCNTs) as rotational bearings. Nano Lett, 2003, 4: 293–297

    Article  ADS  Google Scholar 

  17. Huang Z. Coaxial stability of nano-bearings constructed by double-walled carbon nanotubes. Nanotechnology, 2008, 19: 045701

    Article  ADS  Google Scholar 

  18. Bishop R E D. The vibration of rotating shafts. J Mech Engrg Sci, 1959, 1: 50–65

    Article  Google Scholar 

  19. Bishop R E D, Parkinson A G. Vibration and balancing of flexible shafts. Appl Mech Rev, 1968, 21: 439–451

    Google Scholar 

  20. Morton P G. Modal balancing of flexible shaft without trial weights. Proc Inst Mech Eng C, 1985, 199: 71–78

    Google Scholar 

  21. Morton P G. Measurement of the dynamic characteristics of a large sleeve bearing. Trans ASME J Lubr, 1971, 93: 143–150

    Article  Google Scholar 

  22. Choi S H, Pierre C, Ulsoy A G. Consistent modelling of rotating Timoshenko shafts subject to axial loads. J Vib Acous, 1992, 114: 249–259

    Article  Google Scholar 

  23. Hand L N, Finch J D. Analytical Mechanics. Cambridge: Cambridge University Press, 1998

    Google Scholar 

  24. Goldstein H. Classical Mechanics. 6th ed. Addison-Wesley, 1969

  25. Zu J W Z, Han R P S. Natural frequencies and normal modes of a spinning Timoshenko beam with general boundary conditions. J Appl Mech, 1992, 59: S197–S204

    Article  Google Scholar 

  26. Argento A, Scott R A. Elastic wave propagation in a Timoshenko beam spinning about its longitudinal axis. Wave Motion, 1995, 21: 67–74

    Article  MATH  Google Scholar 

  27. Wang L F, Guo W L, Hu H Y. Group velocity of wave propagation in carbon nanotubes. Proc R Soc A, 2008, 464: 1423–1428

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaPu Zhao.

Additional information

Recommended by Zhao YaPu (Editorial Board Member)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K.T., Zhao, Y. The dispersion characteristics of the waves propagating in a spinning single-walled carbon nanotube. Sci. China Phys. Mech. Astron. 54, 1854 (2011). https://doi.org/10.1007/s11433-011-4476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-011-4476-9

Keywords

Navigation