Skip to main content
Log in

Atomistic simulation of interactions of fracture with defect clusters in delta-Pu

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The Pu-He pair potential fitted by ab initio data, and the Pu-Pu and He-He modified embedded atom method (MEAM) potentials have been implemented to perform multi-scale simulations for the interactions of fracture with the self-interstitial atom (SIA), He interstitial atom and He-vacancy clusters. The simulation results indicate that Pu atoms around the fracture agglomerate into an elliptic self-interstitial loop. Interstitial He atoms evolve into separate interstitial atoms, small He atom clusters and some substitutional He atoms. The He-vacancy cluster forms a spheric structure with a 1:1 He-to-vacancy ratio. Finally, the existence of self-interstitial atoms will lead to the local change of Pu lattice and an increasing disorder, and the whole simulation cell shows a melting state at about 10.0 ps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baclet N, Oudot B, Grynszpan R, et al. Self-irradiation effects in plutonium alloys. J Alloys Compd, 2007, 444–445: 305–309

    Article  Google Scholar 

  2. Siegfried S H. Plutonium-an element never at equilibrium. Met Trans A, 2008, 39: 1585–1592

    Article  Google Scholar 

  3. Ao B Y, Wang X L, Hu W Y, et al. Atomistic study of small helium bubbles in plutonium. J Alloys Compd, 2007, 444–445: 300–304

    Article  Google Scholar 

  4. Wolfer W G, Oudot B, Baclet N. Reversible expansion of gallium-stabilized δ-plutonium. J Nucl Mater, 2006, 359: 185–191

    Article  ADS  Google Scholar 

  5. Caturla M J, Diaz de la Rubia T, Fluss M. Modeling microstructure evolution of f.c.c. metals under irradiation in the presence of He. J Nucl Mater, 2003, 323: 163–168

    Article  ADS  Google Scholar 

  6. Chung B W, Thompson S R, Lema K E, et al. Evolving density and static mechanical properties in plutonium from self-irradiation. J Nucl Mater, 2009, 385: 91–94

    Article  ADS  Google Scholar 

  7. Chung B W, Thompson S R, Woods C H, et al. Density changes in plutonium observed from accelerated aging using Pu-238 enrichment. J Nucl Mater, 2006, 355: 142–149

    Article  ADS  Google Scholar 

  8. Robinson M, Kenny S D, Smith R, et al. Simulating radiation damage in δ-plutonium. Nucl Instrum Meth B, 2009, 267: 2967–2970

    Article  ADS  Google Scholar 

  9. Wolfer W G, Kubota A, Söderlind P, et al. Density changes in Ga-stabilized δ-Pu, and what they mean. J Alloys Compd, 2007, 444–445: 72–79

    Article  Google Scholar 

  10. Schwartz A J. Plutonium metallurgy: The materials science challenges bridging condensed-matter physics and chemistry. J Alloys Compd, 2007, 444–445: 4–10

    Article  Google Scholar 

  11. Freibert F J, Dooley D E, Miller D A. Formation and recovery of irradiation and mechanical damage in stabilized δ-plutonium alloys. J Alloys Compd, 2007, 444–445: 320–324

    Article  Google Scholar 

  12. Ravat B, Oudot B, Baclet N. Study by XRD of the lattice swelling of PuGa alloys induced by self-irradiation. J Nucl Mater, 2007, 366: 288–296

    Article  ADS  Google Scholar 

  13. Wolfer W G, Söderlind P, Landa A. Volume changes in δ-plutonium from helium and other decay products. J Nucl Mater, 2006, 355: 21–29

    Article  ADS  Google Scholar 

  14. Fluss M J, Wirth B D, Wall M, et al. Temperature-dependent defect properties from ion-irradiation in Pu(Ga). J Alloys Compd, 2004, 368: 62–74

    Article  Google Scholar 

  15. Harbur D R. The effect of pressure on phase-stability in the Pu-Ga alloy system. J Alloys Compd, 2007, 444–445: 249–256

    Article  Google Scholar 

  16. Pochet P. Modeling of aging in plutonium by molecular dynamics. Nucl Instr Meth B, 2003, 202: 82–87

    Article  ADS  Google Scholar 

  17. Valone S M, Baskes M I, Stan M, et al. Simulations of low energy cascades in fcc Pu metal at 300 K and constant volume. J Nucl Mater, 2004, 324: 41–51

    Article  ADS  Google Scholar 

  18. Jomard G, Berlu L, Rosa G, et al. Computer simulation study of self irradiation in plutonium. J Alloys Compd, 2007, 444–445: 310–313

    Article  Google Scholar 

  19. Berlu L, Jomard G, Rosa G, et al. A plutonium δ-decay defects production study through displacement cascade simulations with MEAM potential. J Nucl Mater, 2008, 374: 344–353

    Article  ADS  Google Scholar 

  20. Samarin S I, Dremov V V. A hybrid model of primary radiation damage in crystals. J Nucl Mater, 2009, 385: 83–87

    Article  ADS  Google Scholar 

  21. Uberuaga B P, Valone S M. Simulations of vacancy cluster behavior in δ-Pu. J Nucl Mater, 2008, 375: 144–150

    Article  ADS  Google Scholar 

  22. Uberuaga B P, Valone S M, Baskes M I. Accelerated dynamics study of vacancy mobility in δ-plutonium. J Alloys Compd, 2007, 444–445: 314–319

    Article  Google Scholar 

  23. Valone S M, Baskes M I, Martin R L. Atomistic model of helium bubbles in gallium-stabilized plutonium alloys. Phys Rev B, 2006, 73: 214209

    Article  ADS  Google Scholar 

  24. Wheeler D W, Bayer P D. Evaluation of the nucleation and growth of helium bubbles in aged plutonium. J Alloys Compd, 2007, 444–445: 212–216

    Article  Google Scholar 

  25. Baskes M I. Atomistic model of plutonium. Phys Rev B, 2000, 62: 15532–15537

    Article  ADS  Google Scholar 

  26. Baskes M I. Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B, 1992, 46: 2727–2742

    Article  ADS  Google Scholar 

  27. Daw M S, Baskes M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett, 1983, 50: 1285–1288

    Article  ADS  Google Scholar 

  28. Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surface, and other defects in metals. Phys Rev B, 1984, 29: 6443–6453

    Article  ADS  Google Scholar 

  29. Jelinek B, Houze J, Kim S, et al. Modified embedded-atom method interatomic potentials for the Mg-Al alloy system. Phys Rev B, 2007, 75: 054106

    Article  ADS  Google Scholar 

  30. Fynn R A, Ray A K. Ab initio full-potential fully relativistic study of atomic carbon, nitrogen, and oxygen chemisorption on the (111) surface of δ-Pu. Phys Rev B, 2007, 75: 195112

    Article  ADS  Google Scholar 

  31. Sun B, Zhang P, Zhao X G. First-principles local density approximation+ U and generalized gradient approximation+U study of plutonium oxides. J Chem Phys, 2008, 128: 084705

    Article  ADS  Google Scholar 

  32. Jomard G, Amadon B, Bottin F. Structural, thermodynamic, and electronic properties of plutonium oxides from first principles. Phys Rev B, 2008, 78: 075125

    Article  ADS  Google Scholar 

  33. Savrasov S Y, Kotliar G. Ground-state theory of δ-Pu. Phys Rev Lett, 2000, 84: 3670–3673

    Article  ADS  Google Scholar 

  34. Bouchet J, Albers R C, Jomard G. GGA and LDA+U calculations of Pu phases. J Alloys Compd, 2007, 444–445: 246–248

    Article  Google Scholar 

  35. Wang Y, Sun Y. First-principles thermodynamic calculations for δ-Pu and ɛ-Pu. J Phys-Condens Matter, 2000, 12: L311–L316

    Article  ADS  Google Scholar 

  36. Landa A, Sadigh B. Density-functional investigation of magnetism in δ-Pu. Phys Rev B, 2002, 66: 205109

    Article  ADS  Google Scholar 

  37. Kollar J, Vitos L, Skriver H L. Anomalous atomic volume of α-Pu. Phys Rev B, 1997, 55: 15353–15355

    Article  ADS  Google Scholar 

  38. Hay P J, Martin R L. Theoretical studies of the structures and vibrational frequencies of actinide compounds using relativistic effective core potentials with Hartree-Fock and density functional methods: UF6 and PuF6. J Chem Phys, 1998, 109: 3875–3881

    Article  ADS  Google Scholar 

  39. Baskes M I, Muralidharan K, Stan M, et al. Using the modified embedded-atom method to calculate the properties of Pu-Ga alloys. JOM, 55: 41–50

  40. Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09w. Pittsburgh PA: Gaussian, Inc., 2009

    Google Scholar 

  41. Berlu L, Jomard G, Rosa G, et al. Computer simulation of point defects in plutonium using MEAM potentials. J Nucl Mater, 2008, 372: 171–176

    Article  ADS  Google Scholar 

  42. Wolfer W G. Radiation effects in plutonium. Los Alamos Sci, 2000, 26: 274–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RuSong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., He, B. & Zhang, Q. Atomistic simulation of interactions of fracture with defect clusters in delta-Pu. Sci. China Phys. Mech. Astron. 54, 1805 (2011). https://doi.org/10.1007/s11433-011-4466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-011-4466-y

Keywords

Navigation