Skip to main content
Log in

Optical and magnetic properties of transition-metal ions in tetrahedral and octahedral compounds

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

This paper presents the complete energy matrix of the 3d2 system containing the electron-electron interaction, the ligand-field interaction, the spin-orbit coupling interaction, and the Zeeman interaction, in which the optical spectra and g-factor of V3+and Ti2+ ions in the series of tetrahedral AIIBVI (AII=Zn, Cd, BVI=S, Se, Te) semiconductor materials are determined. In the investigation of the optical and magnetic properties of these transition-metal ions in the tetrahedral coordination complexes, we compared the data obtained from the transition-metal ions in the tetrahedral coordination complexes with those obtained from the corresponding ions in the octahedral ones, and found that the tetrahedral complexes have weaker crystal-field strength, inverse energy level ordering and stronger covalence effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mao A J, Kuang X Y. Tetragonal distortion of structural defects in Cr3+ doped in several perovskites calculated from the EPR and optical data: A complete energy matrix study. J Phys Chem A, 2008, 112: 7280–7285

    Article  Google Scholar 

  2. Lu C, Kuang X Y, Tan X M, et al. Theoretical investigation of electron paramagnetic resonance spectra and local structure distortion for Mn2+ ions in CaCO3:Mn2+ system: A simple model for Mn2+ ions in a trigonal ligand field. J Phys Chem A, 2007, 111: 2783–2789

    Article  Google Scholar 

  3. Kuang X Y, Lu C. Characterization of electronic transition energies and trigonal distortion of the (FeO6)9− coordination complex in the Al2O3:Fe3+ system: A simple method for transition-metal ions in a trigonal ligand field. J Phys Chem A, 2006, 110: 11353–11358

    Article  Google Scholar 

  4. Wang H Q, Kuang X Y, Li H F. Studies of EPR theory and trigonal distortion of the (NiX6)4− clusters (X=halide ion) in the series of perovskite crystals AMX3 (A=Rb, Cs; M=Cd, Mg; X=halide ion). Chem Phys Lett, 2008, 460: 365–369

    Article  ADS  Google Scholar 

  5. Li H F, Kuang X Y, Wang H Q. Effect on the EPR and local lattice structure distortion of V3+ ion doping corundum crystal: Three models studies. Mol Phys, 2008, 106(15): 1879–1885

    Article  ADS  Google Scholar 

  6. Luo M, VanMil B L, Tompkins R P, et al. Photoluminescence of ZnTe and ZnTe:Cr grown by molecular-beam epitaxy. J Appl Phys, 2005, 97: 013518

    Article  ADS  Google Scholar 

  7. Bevilacqua G, Martinelli L, Vogel E E. Jahn-Teller effect and the luminescence spectra of V2+ in ZnS and ZnSe. Phys Rev B, 2002, 66: 155338

    Article  ADS  Google Scholar 

  8. Peka P, Lehr M U, Schulz H J, et al. Vanadium centers in ZnTe crystals. I. Optical properties. Phys Rev B, 1996, 53: 1907–1916

    Article  ADS  Google Scholar 

  9. Kreissl J, Irmscher K, Peka P, et al. Vanadium centers in ZnTe crystals II electron paramagnetic resonance. Phys Rev B, 1996, 53: 1917–1926

    Article  ADS  Google Scholar 

  10. Yu W, Yang L H, Teng X Y, et al. Influence of structure characteristics on room temperature ferromagnetism of Ni-doped ZnO thin films. J Appl Phys, 2008, 103: 093901

    Article  ADS  Google Scholar 

  11. Kuzian R O, Daré A M, Sati P, et al. Crystal-field theory of Co2+ in doped ZnO. Phys Rev B, 2006, 74: 155201

    Article  ADS  Google Scholar 

  12. Meulenkamp E A, Peter L M. Mechanistic aspects of the electrodeposition of stoichiometric CdTe on semiconductor substrates. J Chem Soc Faraday Trans, 1996, 92: 4077–4082

    Article  Google Scholar 

  13. Zhu J Y, liu F, Stringfellow G B. Dual-Surfactant effect to enhance p-type doping in III–V semiconductor thin film. Phys Rev Lett, 2008, 101: 196103

    Article  ADS  Google Scholar 

  14. Yang Y C, Zhong C F, Wang X H, et al. Room temperature multiferroic behavior of Cr-doped ZnO films. J Appl Phys, 2008, 104: 064102

    Article  ADS  Google Scholar 

  15. Tkachenko O P, Shpiro E S, Wark M, et al. X-ray photoelectron/ X-ray excited auger electron spectroscopic study of highly dispersed semiconductor CdS and CdO species in zeolites. J Chem Soc Faraday Trans, 1993, 89: 3987–3994

    Article  Google Scholar 

  16. Bol A A, Meijerink A. Luminescence of nanocrystalline ZnS:Pb2+. Phys Chem Chem Phys, 2001, 3: 2105–2112

    Article  Google Scholar 

  17. Condon E U, Shortley G H. The Theory of Atomic Spectra. London: Cambridge University Press, 1979

    Google Scholar 

  18. Schwartz R N, Ziari M, Trivedi S. Electron paramagnetic resonance and an optical investigation of photorefractive vanadium-doped CdTe. Phys Rev B, 1994, 49: 5274–5282

    Article  ADS  Google Scholar 

  19. Weakliem H A. Optical spectra of Ni2+, Co2+ and Cu2+ in tetrahedral sites in crystals. J Chem Phys, 1962, 36: 2117–2140

    Article  ADS  Google Scholar 

  20. Schotz G F, Sedlmeier W, Lindner M, et al. The pressure dependence of the intraimpurity absorption and the charge transfer process of ZnS:Ni and ZnSe:Ni. J Phys-Condes Matter, 1995, 1: 795–802

    Article  ADS  Google Scholar 

  21. Biernacki S W, Roussos G, Schulz H J. The luminescence of V2+(d3) and V3+(d2) ions in ZnS and an advanced interpretation of their excitation levels. J Phys C, 1988, 21: 5615–5630

    Article  ADS  Google Scholar 

  22. Holton W C, Schneider J, Estle T L. Electron paramagnetic resonance of photosensitive iron transition group impurities in ZnS and ZnO. Phys Rev, 1964, 133: A1638–A1641

    Article  ADS  Google Scholar 

  23. Kreissl J, Schulz H J. Transition-metal impurities in II–VI semiconductors: Characterization and switching of charge states. J Cryst Growth, 1996, 161: 239–249

    Article  ADS  Google Scholar 

  24. Dziesiaty J, Peka P, Lehr M U, et al. Electron paramagnetic resonance related to optical charge-transfer processes in ZnSe:Ti. Phys Rev B, 1994, 49: 17011–17021

    Article  ADS  Google Scholar 

  25. Curie D, Barthon C, Canny B. Covalent bonding of Mn2+ ions in octahedral and tetrahedral coordination. J Chem Phys, 1974, 61: 3048–3062

    Article  ADS  Google Scholar 

  26. Griffith J S. The Theory of Transition-Metal Ions. London: Cambridge University Press, 1961

    MATH  Google Scholar 

  27. Boyn R, Ruszczynski G. Jahn-teller structure in 3A2(3F) → 3T1 (3F) absorption band of CdS:Ti2+. Phys Status Solidi B, 1971, 48: 643–655

    Article  ADS  Google Scholar 

  28. Slodowy P A, Barnowski J M. Absorption spectra of Ti(d2), V(d3), and Cr(d4) ions in CdTe. Phys Status Solidi B, 1972, 49: 499–503

    Article  ADS  Google Scholar 

  29. Schneider J, Rrauber A. Electron spin resonance of Ti2+ in ZnS. Phys Lett, 1966, 21: 380–381

    Article  ADS  Google Scholar 

  30. Ma D P, Ma X D, Chen J R, et al. Pressure-induced shifts of energy levels of α-Al2O3:V3+ and a complete ligand-field calculation. Phys Rev B, 1997, 56: 1780–1786

    Article  Google Scholar 

  31. Lever A B P. Inorganic Electronic Spectroscopy. Amsterdam: Elsevier Press, 1984

    Google Scholar 

  32. Chai R P, Kuang X Y, Zhang C X, et al. Theoretical study of EPR spectra and local structure for (NiO6)10− cluster in LiNbO3:Ni2+ and Al2O3:Ni2+ systems. J Phys Chem Solids, 2008, 69: 1848–1854

    Article  ADS  Google Scholar 

  33. Zannoni E, Cavalli E, Toncelli A, et al. Optical spectroscopy of Ca3Sc2Ge3O12:Ni2+. J Phys Chem Solids, 1999, 60: 449–455

    Article  ADS  Google Scholar 

  34. McPherson G L, Srucky G D. Effects of interionic coupling on the electronic spectra of transition metal ions. The ligand field spectra of CsNiCl3 and CsNiBr3. J Chem Phys, 1972, 57: 3780–3786

    Article  ADS  Google Scholar 

  35. Leckebusch R, Neuhaus A, Recker K. Züchtung von reinen und dotierten einkristallen des inkongruent schmelzenden LiBaF3 und ihre absorptions spektromet rische untersuchung. J Cryst Growth, 1972, 16: 10–16

    Article  ADS  Google Scholar 

  36. Hall T P P, Hayes W, Stevenson R W H, et al. Investigation of the bonding of iron-group ions in fluoride crystals. II. J Chem Phys, 1963, 39: 35–39

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuaiQian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Wang, H. & Kuang, X. Optical and magnetic properties of transition-metal ions in tetrahedral and octahedral compounds. Sci. China Phys. Mech. Astron. 54, 1796 (2011). https://doi.org/10.1007/s11433-011-4455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-011-4455-1

Keywords

Navigation