Skip to main content
Log in

Properties of CaB6 single crystals synthesized under high pressure and temperature

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Pure CaB6 single crystals are synthesized under high pressure (1 GPa) and temperature (1050°C). The temperature-dependence of electric resistivity and Hall coefficient from 2 to 300 K shows that the CaB6 single crystals are conductors with semi-metallic behavior and electron carriers. Band structure calculations indicate that the conduction and valence bands meet at the X point at the Fermi level, which is consistent with the experimentally determined conducting behavior of CaB6 single crystals. Calculations of state density suggest that the states at the Fermi level originate from the 2p orbital of the B atoms and the 3d orbital of the Ca atom. Magnetization measurements show the paramagnetic nature of the CaB6. The micro-hardness of CaB6 is 24.39 GPa, and the Raman spectra of CaB6 yield three sharp peaks at around 780.9, 1138.9, and 1282.1 cm−1 for T 2g, E g, and A 1g, respectively. The specific heat of the crystal is measured and found to be well described by the Debye and Einstein combined model. The fitting results show Debye and Einstein temperatures are 1119 and 199 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young D P, Hall D, Torelli M E, et al. High-temperature weak ferromagnetism in a low-density free-electron gas. Nature (London), 1999, 397: 412–414

    Article  ADS  Google Scholar 

  2. Lin Z, Min G H, Yu H, et al. Sintering process and high temperature stability investigation for nano-scale CaB6 materials. Ceram Int, 2010, 36: 2253–2257

    Article  Google Scholar 

  3. Cao M, Jiang J, Liu H, et al. The nature of Fe impurity phase in ferromagnetic CaB6. Physica B-Condens Matter, 2005, 364: 150–156

    Article  ADS  Google Scholar 

  4. Norio O, Shinji N, Naoki O, et al. Raman scattering study of CaB6 and YbB6. J Solid State Chem, 2004, 177: 461–465

    Article  Google Scholar 

  5. Cao M, Jiang J, Liu H, et al. Origin of ferromagnetism in polycrystalline Ca1+δ B6 (−0.05<δ<0.05) ceramics. Physica B-Condens Matter, 2005, 369: 39–43

    Article  ADS  Google Scholar 

  6. Takao M, Shigeki O. Ferromagnetism in lanthanum doped CaB6: is it intrinsic? Solid State Commun, 2002, 123: 287–290

    Article  Google Scholar 

  7. Vonlanthen P, Felder E, Wälti C, et al. Electronic transport and thermal properties of CaB6 and Eu1−x CaxB6. Physica B-Condensed Matter, 2000, 284–288: 1361–1362

    Article  Google Scholar 

  8. Otani S, Mori T. Flux growth and magnetic properties of CaB6 crystals. J Phys Soc Jpn, 2002, 71: 1791–1792

    Article  ADS  Google Scholar 

  9. Otani S, Mori T. Flux growth of CaB6 crystals. J Mater Sci Lett, 2003, 22: 1065–1066

    Article  Google Scholar 

  10. Gavilano J L, Mushkolaj S, Rau D, et al. Anomalous NMR spin-lattice relaxation in SrB6 and Ca1−x LaxB6. Phys Rev B, 2001, 63: 140410(R)

    Article  ADS  Google Scholar 

  11. Tromp H J, Gelderen P, Kelly P J, et al. CaB6: A new semiconducting material for spin electronics. Phys Rev Lett, 2001, 87: 016401

    Article  ADS  Google Scholar 

  12. Denlinger J D, Clack J A, Allen J W, et al. Bulk band gaps in divalent hexaborides. Phys Rev Lett, 2002, 89: 157601

    Article  ADS  Google Scholar 

  13. Gianno K, Sologubenko A V, Ott H R, et al. Low-temperature thermoelectric power of CaB6. J Phys Condens Matter, 2002, 14: 1035–1043

    Article  ADS  Google Scholar 

  14. Massida S, Continenza A, de Pascale T M, et al. Electronic structure of divalent hexaborides. Z Phys B, 1997, 102: 83–89

    Article  ADS  Google Scholar 

  15. Li Y, Yang J, Cui X, et al. Electrical properties of polycrystalline CaB6 under high pressure and low temperature. Phys Status Solidi (b), 2011, 248: 1162–1165

    Article  ADS  Google Scholar 

  16. Morikawa T, Nishioka T, Sato N K. Ferromagnetism Induced by Ca Vacancy in CaB6. J Phys Soc Jpn, 2001, 70: 341–344

    Article  ADS  Google Scholar 

  17. Hall D, Young D P, Fisk Z, et al. Fermi-surface measurements on the low-carrier density ferromagnet Ca1−x LaxB6 and SrB6. Phys Rev B, 2001, 64: 233105

    Article  ADS  Google Scholar 

  18. Ott H R, Chernikov M, Felder E, et al. Structure and low temperature properties of SrB6. Z Phys B, 1997, 102: 337–345

    Article  ADS  Google Scholar 

  19. Monnier R, Delley B. Point defects, ferromagnetism, and transport in calcium hexaboride. Phys Rev Lett, 2001, 87: 157204

    Article  ADS  Google Scholar 

  20. Taniguchi K, Katsufuji T, Sakai F, et al. Charge dynamics and possibility of ferromagnetism in A x LaxB6 (A=Ca and Sr). Phys Rev B, 2002, 66: 064407

    Article  ADS  Google Scholar 

  21. Matsubayashi K, Maki M, Moriwaka T, et al. Extrinsic origin of high-temperature ferromagnetism in CaB6. J Phys Soc Jpn, 2003, 72: 2097–2012

    Article  ADS  Google Scholar 

  22. Dorneles L S, Venkatesan M, Moliner M, et al. Magnetism in thin films of CaB6 and SrB6. Appl Phys Lett, 2010, 85: 6377–6379

    Article  ADS  Google Scholar 

  23. Xin S, Han X, Liu S, et al. CaB6 single crystals grown under high pressure and high temperature. J Crystal Growth, 2010, 313: 47–50

    Article  ADS  Google Scholar 

  24. Rhyee J S, Cho B K. The effect of boron purity on electric and magnetic properties of CaB6. J Appl Phys, 2004, 95: 6675–6677

    Article  ADS  Google Scholar 

  25. Terashima T, Terakura C, Umeda Y, et al. Ferromagnetism vs paramagnetism and false quantum oscillations in lanthanum-doped CaB6. J Phys Soc Jpn, 2000, 69: 2423–2426

    Article  ADS  Google Scholar 

  26. Meegoda C, Trenary M, Mori T, et al. Depth profile of iron in a CaB6 crystal. Phys Rev B, 2003, 67: 172410

    Article  ADS  Google Scholar 

  27. Adams R M. Boron, Metallo-Boron Compounds and Boranes. New York: Welly, 1964. 233

    Google Scholar 

  28. Wigger G A, Felder E, Weyeneth S, et al. Kondo behavior of U in CaB6. Physica B-Condensed Matter, 2005, 359–361: 938–940

    Article  Google Scholar 

  29. Vonlanthen P, Felder E, Degiorgi L, et al. Electronic transport and thermal and optical properties of Ca1-xLaxB6. Phys Rev B, 2000, 62: 10076–10082

    Article  ADS  Google Scholar 

  30. Keppens V, Mandrus V D, Sales B C, et al. Localized vibrational modes in metallic solids. Nature, 1998, 395(6705): 876–878

    Article  ADS  Google Scholar 

  31. Laird B B, Schober H R. Localized low-frequency vibrational modes in a simple model glass. Phys Rev Lett, 1991, 66(5): 636–639

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DongLi Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, S., Liu, S., Zhao, Z. et al. Properties of CaB6 single crystals synthesized under high pressure and temperature. Sci. China Phys. Mech. Astron. 54, 1791 (2011). https://doi.org/10.1007/s11433-011-4453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-011-4453-3

Keywords

Navigation