Predictions of synthesizing element 119 and 120

  • ZaiGuo Gan
  • XiaoHong Zhou
  • MingHui Huang
  • ZhaoQing Feng
  • JunQing LiEmail author
Research Paper Radioactive Nuclear Beam Physics and Nuclear Astrophysics


The evaporation residue cross sections of synthesizing superheavy nuclei Z=119, 120 are calculated by different sets of master equations with different dynamical variables. Two methods basically predicted similar results that the 48Ca induced hot fusion can produce element 119 easier than produce 120, and the evaporation residue cross sections for 119 are detectable by current advanced techniques, while the evaporation residue cross sections are below 0.1 pb for producing element 120.


super heavy nuclei evaporation residue cross section master equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hofmann S. Study of SHE at the GSI-SHIP. Prog Part Nucl Phys, 2009, 62: 337–343ADSCrossRefGoogle Scholar
  2. 2.
    Morita K, Morimoto K, Kaji D, et al. Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn, n)278113. J Phys Soc Jpn, 2004, 73: 2593–2596ADSCrossRefGoogle Scholar
  3. 3.
    Oganessian Y. Heaviest nuclei from 48Ca-induced reactions. Nucl Part Phys, 2007, 34: R165–R242ADSCrossRefGoogle Scholar
  4. 4.
    Oganessian Y T, Abdullin F S, Bailey P D, et al. Synthesis of a new element with atomic number Z=117. Phys Rev Lett, 2010, 104: 142502ADSCrossRefGoogle Scholar
  5. 5.
    Armbruster P. On the production of heavy elements by cold fusion: The elements 106 to 109. Annu Rev Nucl Sci, 1985, 35: 135–194MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Hofmann S. New elements—approaching Z=114. Rep Prog Phys, 1998, 61: 639–689ADSCrossRefGoogle Scholar
  7. 7.
    Hofmann S, Muenzenberg G. The discovery of the heaviest elements. Rev Mod Phys, 2000, 72: 733–767ADSCrossRefGoogle Scholar
  8. 8.
    Hofmann S, Heßberger F P, Ackermann D, et al. New results on elements 111 and 112. Eur Phys J A, 2002, 14: 147–157ADSCrossRefGoogle Scholar
  9. 9.
    Oganessian Y T, Utyonkov V K, Lobanovet Y V, et al. Synthesis of superheavy nuclei in the 48Ca+244Pu Reacti on. Phys Rev Lett, 1999, 83: 3154–3157; Oganessian Y T, Yeremin A V, Popeko A G, et al. Synthesis of nuclei of the superheavy element 114 in reactions induced by 48Ca. Nature, 1999, 400: 242–245; Danilyan G V, Fedorov A M, Gagarski A M, et al. Left-right asymmetry of long-range α-particles angular distribution in ternary fission of 235U induced by cold polarized neutrons. Phys Atom Nucl, 2000, 63: 1671–1672; Oganessian Y T, Utyonkov V K, Lobanov Yu V, et al. Synthesis of superheavy nuclei in the 48Ca + 244Pu Reaction: 288114. Phys Rev C, 2000, 62: 041604; Oganessian Y T, Utyonkov V K, Moody K J. Synthesis of 292116 in the 248Cm + 48Ca reaction. Phys Atom Nucl, 2001, 64: 1349–1355; Oganessian Y T. Observation of the decay of 292116. Phys Rev C, 2001, 63: 011301ADSCrossRefGoogle Scholar
  10. 10.
    Ninov V, Gregorich K E, Lovelandet W, et al. Observation of superheavy nuclei produced in the reaction of 86Kr with 208Pb. Phys Rev Lett, 1999, 83: 1104–1107; Ninov V, Gregorich K E, Loveland W, et al. Editorial note: Observation of superheavy nuclei produced in the reaction of 86Kr with 208Pb [Phys. Rev. Lett. 83, 1104 (1999)]. Phys Rev Lett, 2002, 89: 039901ADSCrossRefGoogle Scholar
  11. 11.
    Muenzenberg G, Armbruster P, Backe H, et al. Superheavy Elements. In: Habs H D. Munich Accelerator for Fission Fragments (MAFF). Muenchen, 27. November, 1998. S.5Google Scholar
  12. 12.
    Adamian G G, Antonenko N V, Scheid W, et al. Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei. Nucl Phys, 1977, A627: 361–378; Adamian G G, Antonenko N V, Scheid W, et al. Fusion cross sections for superheavy nuclei in the dinuclear system concept. Nucl Phys, 1998, A633: 409–420ADSGoogle Scholar
  13. 13.
    Feng Z Q, Jin G M, Fu F, et al. Production cross sections of superheavy nuclei based on dinuclear system model. Nucl Phys, 2006, A771: 50–67ADSGoogle Scholar
  14. 14.
    Reiter P, Khoo T L, Lauritsen T, et al. Entry distribution, fission barrier, and formation mechanism of 102254No. Phys Rev Lett, 2000, 84: 3542–3545ADSCrossRefGoogle Scholar
  15. 15.
    Feng Z Q, Jin G M, Li J Q, et al. Formation of superheavy nuclei in cold fusion reactions. Phys Rev C 2007, 76: 044606ADSCrossRefGoogle Scholar
  16. 16.
    Li W F, Wang N, Li J F, et al. Fusion probability in heavy-ion collisions by a dinuclear-system model. Eur Phys Lett, 2003, 64: 750–756ADSCrossRefGoogle Scholar
  17. 17.
    Li W F, Wang N, Jia F, et al. Particle transfer and fusion cross-section for super-heavy nuclei in dinuclear system. J Phys G, 2006, 32: 1143–1155ADSCrossRefGoogle Scholar
  18. 18.
    Feng Z Q, Jin G M, Li J Q, et al. Production of heavy and superheavy nuclei in massive fusion reactions. Nucl Phys A, 2009, 816: 33–51ADSCrossRefGoogle Scholar
  19. 19.
    Wolschin G, Nörenberg W. Analysis of relaxation phenomena in heavyion collisions. Z Phys, 1978, A284: 209–216ADSGoogle Scholar
  20. 20.
    Li J Q, Wolschin G. Distribution of the dissipated angular momentum in heavy-ion collisions. Phys Rev C, 1983, 27: 590–601ADSCrossRefGoogle Scholar
  21. 21.
    Huang M H, Gan Z G, Feng Z Q, et al. Neutron and proton diffusion in fusion reactions for the synthesis of superheavy nuclei. Chin Phys Lett, 2008, 25: 1243–1246ADSCrossRefGoogle Scholar
  22. 22.
    Huang M H, Gan Z G, Zhou X H, et al. Competing fusion and quasifission reaction mechanisms in the production of superheavy nuclei. Phys Rev C, 2010, 82: 044614ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • ZaiGuo Gan
    • 1
  • XiaoHong Zhou
    • 1
  • MingHui Huang
    • 1
  • ZhaoQing Feng
    • 1
  • JunQing Li
    • 1
    • 2
    Email author
  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.School of Nuclear Science and TechnologyLanzhou UniversityLanzhouChina

Personalised recommendations