Skip to main content
Log in

Description of squeezed surface plasmons

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Surface plasmon polaritons (SPPs) are the combined electron oscillations and electromagnetic waves propagating along the interface between a conductor and a dielectric. Recently Huck et al. [Huck A, et al. Phys Rev Lett, 2009, 102: 246802] proved that SPPs can be in a squeezed state, and the squeezed surface plasmons can propagate in a gold waveguide. In this paper, we introduce a quantum mechanical description of the squeezed surface plasmons at first, and discuss the influence of the waveguide losses on the squeezed surface plasmons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zayats A V, Smolyaninov I I, Maraduelin A A. Nano-optics of surface plasmon polaritions. Phys Rep, 2005, 408: 131–314; Maier S A. Plasmonics: Fundamentals and Applications. New York: Springer, 2007

    Article  ADS  Google Scholar 

  2. Davis T J, Gomoz D E, Vemon K C. Interaction of molecules with localized surface plasmons in metallic nanoparticles. Phys Rev B, 2010, 81: 045432

    Article  ADS  Google Scholar 

  3. Chang C C, Sharma Y D, Kim Y S, et al. A surface plasmon enhanced infrared photodetector based on InAs quantum dots. Nano Lett, 2010, 10: 1704–1709

    Article  ADS  Google Scholar 

  4. Pang H S, Lee T W, Moharam M G, et al. Integrated optical SPR sensor based on mode conversion efficiency. Electron Lett, 2008, 44: 971–972

    Article  Google Scholar 

  5. Poper D K, Ahn W, Taylor B, et al. Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures. IEEE Sens J, 2010, 10: 531–540

    Article  Google Scholar 

  6. Yang Z L, Li Q H, Ruan F X, et al. FDTD for plasmonics: Applications in enhanced Raman spectroscopy. Chin Sci Bull, 2010, 55(24): 2635–2642; Masiello D J, Schatz G C. Many body theory of surface-enhanced Raman scattering. Phys Rev A, 2008, 78: 042505

    Article  MathSciNet  Google Scholar 

  7. Borys N J, Walter M J, Lupton J M. Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films. Phys Rev B, 2009, 80: 161407(R); Cao L, Panoiu N C, Bhat R D R, et al. Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures. Phys Rev B, 2009, 79: 235416

    Article  ADS  Google Scholar 

  8. Wei H, Xu H X. Single molecule surface enhanced spectroscopy. Sci China Ser G-Phys Mech Astron, 2010, 40(1): 1–15; Mendonca J T, Thide B, Then H. Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum. Phys Rev Lett, 2009, 102: 185005

    MATH  Google Scholar 

  9. Shegai T, Huang Y Z, Xu H X, et al. Coloring fluorescence emission with silver nanowires. Appl Phys Lett, 2010, 96: 103114

    Article  ADS  Google Scholar 

  10. Fang Y, Wei H, Hao F, et al. Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons. Nano Lett, 2009, 9: 2049–2053

    Article  ADS  Google Scholar 

  11. Pitarke J M, Silkin V M, Chulkov E V, et al. Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys, 2007, 70: 1–87

    Article  ADS  Google Scholar 

  12. Brongersma M L, Kik P G. Surface Plasmon Nanophotonics. Berlin: Springer Verlag Press, 2007. Chapter 1

    Book  Google Scholar 

  13. Altewischer E, van Exter M P, Woerdman J P. Plasmon assisted transmission of entangled photons. Nature, 2002, 418: 304–306

    Article  ADS  Google Scholar 

  14. Moreno E, Garcia-Vidal F J, Erni D, et al. Theory of plasmon assisted transmission of entangled photons. Phys Rev Lett, 2004, 92: 236801

    Article  ADS  Google Scholar 

  15. Huck A, Smolka S, Lodahl P, et al. Demonstration of quadrature squeezed surface plasmons in a gold waveguide. Phys Rev Lett, 2009, 102: 246802

    Article  ADS  Google Scholar 

  16. Yang B J. Foundation of Quantum Optics (in Chinese). Beijing: BUPT Press, 1996. Chapter 5

    Google Scholar 

  17. Braunstein S L, Vanloock P. Quantum information theory. Rev Mod Phys, 2005, 77: 513–577

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Ballester D, Tame M S, Lee C, et al. Long range surface plasmon polariton excitation at the quantum level. Phys Rev A, 2009, 79: 053845

    Article  ADS  Google Scholar 

  19. Ballester D, Tame M S, Kim M S. Quantum theory of surface plasmon polariton scattering. Phys Rev A, 2010, 82: 012325

    Article  ADS  Google Scholar 

  20. Walls D F, Milburn G J. Quantum Optics. Berlin: Springer-Verlag Press, 1994. Chapter 6

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BoJun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Wang, Y. & Yang, B. Description of squeezed surface plasmons. Sci. China Phys. Mech. Astron. 54, 1583 (2011). https://doi.org/10.1007/s11433-011-4429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-011-4429-3

Keywords

Navigation