Skip to main content
Log in

Chain formation in a monolayer of dipolar hard spheres under an external field

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The phase behavior of a monolayer of dipolar hard spheres under an external field, which makes all dipoles of the monolayer orientate along its direction, is investigated. Using integral equation theory in the reference hypernetted chain (RHNC) approximation we calculate the correlation functions, which are used to obtain the response matrix of grand potential with respect to density fluctuations. The smallest eigenvalue of this response matrix determines the stability of the monolayer. When the smallest eigenvalue approaches zero, the monolayer becomes unstable and the corresponding eigenvector characterizes this instability. At dilute densities, with decreasing temperature the dipoles of the monolayer begin to form chains and simultaneously condensate. At medium and high densities, however, the dipoles of the monolayer have a stronger tendency to form dipolar chains with decreasing temperature and there is no condensation. The part of specific heat related to potential energy is investigated and found to increase sharply near the temperature of dipolar chain formation. This is in accordance with a sharp decrease in potential energy induced by the formation of a dipolar chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butter K, Bomans P H, Frederik P M, et al. Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nat Mater, 2003, 2: 88–91

    Article  ADS  Google Scholar 

  2. Klokkenburg M, Erné B H, Meeldijk J D, et al. In Situ imaging of fieldinduced hexagonal columns in magnetite ferrofluids. Phys Rev Lett, 2006, 97: 185702

    Article  ADS  Google Scholar 

  3. Klokkenburg M, Dullens R P A, Kegel W K, et al. Quantitative realspace analysis of self-assembled structures of magnetic dipolar colloids. Phys Rev Lett, 2006, 96: 037203

    Article  ADS  Google Scholar 

  4. Klokkenburg M, Erné B H, Wiedenmann A, et al. Dipolar structures in magnetite ferrofluids studied with small-angle neutron scattering with and without applied magnetic field. Phys Rev E, 2007, 75: 051408

    Article  ADS  Google Scholar 

  5. Halsey T C, Toor W. Structure of electrorheological fluids. Phys Rev Lett, 1990, 65: 2820–2823

    Article  ADS  Google Scholar 

  6. Lumsdon S O, Kaler E W, Velev O D. Two-dimensional crystallization of microspheres by a coplanar AC electric field. Langmuir, 2004, 20: 2108–2116

    Article  Google Scholar 

  7. Weis J J, Tavares JM, Telo da Gama M M. Structural and conformational properties of a quasi-two-dimensional dipolar fluid. J Phys-Condes Matter, 2002, 14: 9171–9186

    Article  ADS  Google Scholar 

  8. Weis J J. Simulation of quasi-two-dimensional dipolar systems. J Phys-Condes Matter, 2003, 15: S1471–S1495

    Article  ADS  Google Scholar 

  9. Tavares J M, Weis J J, Telo da Gama M M. Quasi-two-dimensional dipolar fluid at low densities: Monte Carlo simulations and theory. Phys Rev E, 2002, 65: 061201

    Article  ADS  Google Scholar 

  10. Tavares J M, Weis J J, Telo da Gama M M. Phase transition in two-dimensional dipolar fluids at low densities. Phys Rev E, 2006, 73: 041507

    Article  ADS  Google Scholar 

  11. Duncan P D, Camp P J. Structure and dynamics in a monolayer of dipolar spheres. J Chem Phys, 2004, 121: 11322–11331

    Article  ADS  Google Scholar 

  12. Duncan P D, Camp P J. Aggregation kinetics and the nature of phase separation in two-dimensional dipolar fluids. Phys Rev Lett, 2006, 97: 107202

    Article  ADS  Google Scholar 

  13. Cerdá J J, Kantorovich S, Holm C. Aggregate formation in ferrofluid monolayers: Simulations and theory. J Phys-Condes Matter, 2008, 20: 204125

    Article  ADS  Google Scholar 

  14. Osipov M A, Teixeira P I C, Telo da Gama M M. Structure of strongly dipolar fluids at low densities. Phys Rev E, 1996, 54: 2597–2609

    Article  ADS  Google Scholar 

  15. Kantorovich S, Cerdá J J, Holm C. Microstructure analysis of monodisperse ferrofluid monolayers: Theory and simulation. Phys Chem Chem Phys, 2008, 10: 1883–1895

    Article  Google Scholar 

  16. Ornstein L S, Zernike F. Acculental deviations of density and opalescence at the critical point of a simple substance. Proc Acad Sci (Amsterdam), 1914, 17: 793–806

    Google Scholar 

  17. Hansen J P, McDonald I R. Theory of Simple Liquids. 3rd ed. Amsterdam: Academic Press, 2006

    Google Scholar 

  18. Fries P H, Patey G N. The solution of the hypernetted-chain approximation for fluids of nonspherical particles. A general method with application to dipolar hard spheres. J Chem Phys, 1985, 82: 429–440

    Article  ADS  Google Scholar 

  19. Kinoshita M, Harada M. Numerical solution of the HNC equation for fluids of non-spherical particles. An efficient method with application to dipolar hard spheres. Mol Phys, 1991, 74: 443–464

    Article  ADS  Google Scholar 

  20. Klapp S H L, Forstmann F. Phase transitions in dipolar fluids: An integral equation study. J Chem Phys, 1997, 106: 9743–9761

    Article  ADS  Google Scholar 

  21. Klapp S H L, Forstmann F. Phase behavior of aligned dipolar hard spheres: Integral equations and density functional results. Phys Rev E, 1999, 60: 3183–3198

    Article  ADS  Google Scholar 

  22. Range G M, Klapp S H L. Pair formation and global ordering of strongly interacting ferrocolloid mixtures: An integral equation study. J Chem Phys, 2006, 124: 114707

    Article  ADS  Google Scholar 

  23. Hoffmann N, Likos C N, Löwen H. Correlations of two-dimensional super-paramagnetic colloids in tilted external magnetic fields. Mol Phys, 2007, 105: 1849–1860

    Article  ADS  Google Scholar 

  24. Luo L, Klapp S H L. Fluctuations in a ferrofluid monolayer: An integral equation study. J Chem Phys, 2009, 131: 034709

    Article  ADS  Google Scholar 

  25. van Leeuwen J M J, Groeneveld J, de Boer J. New method for the calculation of the pair correlation function. I. Physica, 1959, 25: 792–808; Meeron E. Nodal expansions. 3. Exact integral equations for particle correlation functions. J Math Phys, 1960, 1: 192–201; Morita T, Hiroike K. Theory of classical fluids: Hyper-Netted chain approximation. III. A new integral equation for the pair distribution function. Prog Theor Phys, 1960, 23: 829–845

    ADS  MATH  Google Scholar 

  26. Guo X, Riebel U. Theoretical direct correlation function for twodimensional fluids of monodisperse hard spheres. J Chem Phys, 2006, 125: 144504

    Article  ADS  Google Scholar 

  27. Lado F. Numerical Fourier transforms in one, two, and three dimensions for liquid state calculations. J Comput Phys, 1971, 8: 417–433

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Chen X S, Kasch M, Forstmann F. Demixing phase transition in amixture of hard-sphere dipoles and neutral hard spheres. Phys Rev Lett, 1991, 67: 2674–2677

    Article  ADS  Google Scholar 

  29. Chen X S, Forstmann F. The phase instability of molecular fluid mixtures: Dipolar and neutral hard spheres. Mol Phys, 1992, 76: 1203–1211

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoSong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, L., Chen, X. Chain formation in a monolayer of dipolar hard spheres under an external field. Sci. China Phys. Mech. Astron. 54, 1555 (2011). https://doi.org/10.1007/s11433-011-4428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-011-4428-4

Keywords

Navigation