Skip to main content
Log in

The interfacial fracture behavior of foam core composite sandwich structures by a viscoelastic cohesive model

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A sandwich beam model consisting of two face sheets and a foam core bonded by a viscoelastic adhesive layer is considered in order to investigate interfacial fracture behavior. Firstly, a cohesive zone model in conjunction with a Maxwell element in parallel, or with a Kelvin element in series, respectively, is employed to describe the characteristics of viscoelasticity for the adhesive layer. The models can be implemented into the implicit finite element code. Next, the parametric study shows that the influences of loading rates on the cohesive zone energy and strength are quite different for different models. Finally, a sandwich double cantilever beam model is adopted to simulate the interface crack growth between the face sheet and core. Numerical examples are presented for various loading rates to demonstrate the efficacy of the rate-dependent cohesive models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim J K, Yu T X. Forming and failure behaviour of coated, laminated and sandwiched sheet metals: a review. J Mater Process Technol, 1997, 63: 33–42

    Article  Google Scholar 

  2. Vadakke V, Carlsson L A. Experimental investigation of compression failure of sandwich specimens with face/core debond. Compos Part B, 2004, 35: 583–590

    Article  Google Scholar 

  3. Avilés F, Carlsson L A. Analysis of the sandwich DCB specimen for debond characterization. Eng Fract Mech, 2008, 75: 153–168

    Article  Google Scholar 

  4. Siriruk A, Penumadu D, Weitsman Y J. Effect of sea environment on interfacial delamination behavior of polymeric sandwich structures. Compos Sci Technol, 2009, 69: 821–828

    Article  Google Scholar 

  5. Dugdale D S. Yielding of steel sheets containing slits. J Mech Phys Solids, 1960, 8: 100–104

    Article  ADS  Google Scholar 

  6. Barenblatt G I. The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech, 1962, 7: 55–129

    Article  MathSciNet  Google Scholar 

  7. Elices M, Guinea G V, Gómez J, et al. The cohesive zone model: advantages, limitations and challenges. Eng Fract Mech, 2002, 69: 137–163

    Article  Google Scholar 

  8. Elmarakbi A M, Hu N, Fukunaga H. Finite element simulation of delamination growth in composite materials using LS-DYNA. Compos Sci Technol, 2009, 69: 2383–2391

    Article  Google Scholar 

  9. Sridharan S, Li Y. Static and dynamic delamination of foam core sandwich members. AIAA J, 2006, 44: 2937–2948

    Article  ADS  Google Scholar 

  10. Han T S, Ural A, Chen C S, et al. Delamination buckling and propagation analysis of honeycomb panels using a cohesive element approach. Int J Fract, 2002, 115: 101–123

    Article  Google Scholar 

  11. Bažant Z P, Li Y N. Cohesive crack with rate-dependent opening and viscoelasticity: I. Mathematical model and scaling. Int J Fract, 1997, 86: 247–265

    Article  Google Scholar 

  12. Allen D H, Searcy C R. A micromechanical model for a viscoelastic cohesive zone. Int J Fract, 2001, 107: 159–176

    Article  Google Scholar 

  13. Wu Y Q, Huang F L. A micromechanical model for predicting combined damage of particles and interface debonding in PBX explosives. Mech Mater, 2009, 41: 27–47

    Article  Google Scholar 

  14. Xu C, Siegmund T, Ramani K. Rate-dependent crack growth in adhesives: I. Modeling approach. Int J Adhes Adhes, 2003, 23: 9–13

    Article  Google Scholar 

  15. Xu C, Siegmund T, Ramani K. Rate-dependent crack growth in adhesives II. Experiments and analysis. Int J Adhes Adhes, 2003, 23: 15–22

    Article  Google Scholar 

  16. Zhu Y, Liechti K M, Ravi-Chandar K. Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces. Int J Solids Struct, 2009, 46: 31–51

    Article  Google Scholar 

  17. Cornec A, Scheider I, Schwalbe K. On the practical application of the cohesive model. Eng Fract Mech, 2003, 70: 1963–1987

    Article  Google Scholar 

  18. Sun S Y, Chen H R. Quasi-static and dynamic fracture behavior of composite sandwich beams with a viscoelastic interface crack. Compos Sci Technol, 2010, 70: 1011–1016

    Article  Google Scholar 

  19. Mi Y, Crisfield M A, Davies G A O, et al. Progressive Delamination Using Interface Elements. J Compos Mater, 1998, 32: 1246–1272

    Article  Google Scholar 

  20. Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Meth Eng, 1999, 44: 1267–1282

    Article  MATH  Google Scholar 

  21. Xu X P, Needleman A. Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids, 1994, 42: 1397–1434

    Article  ADS  MATH  Google Scholar 

  22. Makhecha D P. Dynamic Fracture of Adhesively Bonded Composite Structures Using Cohesive Zone Models. Dissertation for the Doctoral Degree. Virginia: Virginia Polytechnic Institute and State University, 2005

    Google Scholar 

  23. Li X M, Carlsson L A. Elastic foundation analysis of tilted sandwich debond (TSD) specimen. J Sandwich Struct Mater, 2000, 2: 3–32

    Google Scholar 

  24. Hibitt, Karlsson & Sorenson, Inc. ABAQUS User’s Manual Version 6.4, 2004

  25. Wang J, Kang Y L, Qin Q H, et al. Identification of time-dependent interfacial mechanical properties of adhesive by hybrid/inverse method. Comp Mater Sci, 2008, 43: 1160–1164

    Article  Google Scholar 

  26. Papanicolaou G C, Bakos D. Interlaminar fracture behaviour of sandwich structures. Compos Part A, 1996, 27: 165–173

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaoRan Chen.

Additional information

Recommended by WANG JianXiang (Editorial Board Member)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, S., Chen, H. The interfacial fracture behavior of foam core composite sandwich structures by a viscoelastic cohesive model. Sci. China Phys. Mech. Astron. 54, 1481–1487 (2011). https://doi.org/10.1007/s11433-011-4393-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4393-y

Keywords

Navigation