Skip to main content
Log in

A novel enriched CB shell element method for simulating arbitrary crack growth in pipes

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In this work, a novel numerical method is developed for simulating arbitrary crack growth in pipes with the idea of enriched shape functions which can represent the discontinuity independent of the mesh. The concept of the enriched shape functions is introduced into the continuum-based (CB) shell element. Due to the advantage of CB shell element, the shell thickness variation and surface connection can be concerned during the deformation. The stress intensity factors of the crack in the CB shell element are calculated by using the ‘equivalent domain integral’ method for 3D arbitrary non-planar crack. The maximum energy release rate is used as a propagation criterion. This method is proved able to capture arbitrary crack growth path in pipes which is independent of the element mesh. Numerical examples of different fracture patterns in pipes are presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhuang Z, Guo Y J. Analysis of dynamic fracture mechanism in gas pipelines. Eng Fract Mech, 1999, 64: 271–289

    Article  Google Scholar 

  2. Nishioka T. Computational dynamic fracture mechanics. Int J Fract, 1997, 86: 127–159

    Article  Google Scholar 

  3. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng, 1999, 45: 601–620

    Article  MathSciNet  MATH  Google Scholar 

  4. Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Methods Eng, 1999, 46: 131–150

    Article  MATH  Google Scholar 

  5. Moes N, Belytschko T. Extended finite element method for cohesive crack growth. Eng Fract Mech, 2002, 69: 813–833

    Article  Google Scholar 

  6. Song J H, Areias P M A, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng, 2006, 67: 868–893

    Article  MATH  Google Scholar 

  7. Areias P M A, Belytschko T. Two-scale shear band evolution by local partition of unity. Int J Numer Methods Eng, 2006, 66: 878–910

    Article  MathSciNet  MATH  Google Scholar 

  8. Chessa J, Belytschko T. An extended finite element method for two-phase fluids. J Appl Mech, 2003, 70, 1: 10–17

    Article  MathSciNet  Google Scholar 

  9. Ma S, Zhang X, Qiu X M. Comparison study of MPM and SPH in modeling hypervelocity impact problems. Int J Impact Eng, 2009, 36: 72–282

    Google Scholar 

  10. Areias P M A, Belytschko T. Non-linear analysis of shells with arbitrary evolving cracks using XFEM. Int J Numer Methods Eng, 2005, 62: 384–415

    Article  MATH  Google Scholar 

  11. Song J H, Belytschko T. Dynamic fracture of shells subjected to impulsive loads. J Appl Mech, 2009, 76: 051301

    Article  Google Scholar 

  12. Areias P M, Song J H, Belytschko T. Analysis of fracture in thin shells by overlapping paired elements. Comput Methods Appl Mech Eng, 2006, 195: 5343–5360

    Article  MATH  ADS  Google Scholar 

  13. Wyart E, Coulon D, Duflot M, et al. A substructured FE-shell/XFE-3D method for crack analysis in thin-walled structures. Int J Numer Methods Eng, 2007, 72: 757–779

    Article  MATH  Google Scholar 

  14. Rabczuk T, Areias PMA, Belytschko T. A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Methods Eng, 2007, 72: 524–548

    Article  MathSciNet  MATH  Google Scholar 

  15. Gato C. Detonation-driven fracture in thin shell structures: Numerical studies. Appl Math Model, 2010, 34: 3741–3753

    Article  MathSciNet  MATH  Google Scholar 

  16. Ahmad S, Irons B B, Zienkiewicz O C. Analysis of thick and thin shell structures by curved finite elements. Int J Numer Methods Eng, 1970, 2: 419–451

    Article  Google Scholar 

  17. Hughes T J R, Liu W K. Nonlinear finite element analysis of shells: Part 1, Two-dimensional shells. Comput Methods Appl Mech Eng, 1981, 26: 167–181

    Article  MathSciNet  Google Scholar 

  18. Hughes T J R, Liu W K. Nonlinear finite element analysis of shells: Part 2, Three-dimensional shells. Comput Methods Appl Mech Eng, 1981, 26: 331–362

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Buechter N, Ramm E. Shell theory versus degeneration-a comparison of large rotation finite element analysis. Int J Numer Meth Eng, 1992, 34: 39–59

    Article  MATH  Google Scholar 

  20. Simo J C, Fox D D. On a stress resultant geometrically exact shell model, Part I: Formulation and optimal parametrization. Comput Methods Appl Mech Eng, 1989, 72: 267–304

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Parisch H. A continuum-based shell theory for non-linear applications. Int J Numer Methods Eng, 1995, 38: 1855–1883

    Article  MATH  Google Scholar 

  22. Belytschko T, Liu W K, Moran B. Nonlinear Finite Element Method for Continua and Structures. New York: John Wiley & Sons, Ltd., 2000

    Google Scholar 

  23. Belytschko T, Moes N, Gravouil A. Non-planar 3D crack growth by the extended fnite element and level sets-Part I: Mechanical model. Int J Numer Methods Eng, 2002, 53: 2549–2568

    Article  MATH  Google Scholar 

  24. Nikishkov G P, Atluri S N. Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack, by the’ equivalent domain integral’ method. Int J Numer Methods Eng, 1987, 24: 1801–1821

    Article  MATH  Google Scholar 

  25. Shivakumar K N. An equivalent domain integral method for three-dimensional mexed-mode fracture problems. Eng Fract Mech, 1992, 42: 935–959

    Article  ADS  Google Scholar 

  26. Chang J, Xu J Q, Mutoh Y. A general mixed-mode brittle fracture criterion for cracked materials. Eng Fract Mech, 2006, 73: 1249–1263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Zhuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, Z., Cheng, B. A novel enriched CB shell element method for simulating arbitrary crack growth in pipes. Sci. China Phys. Mech. Astron. 54, 1520–1531 (2011). https://doi.org/10.1007/s11433-011-4385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4385-y

Keywords

Navigation