Skip to main content
Log in

Weighing super-massive black holes with narrow Fe Kα line

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

It has been suggested that the narrow cores of the Fe Kα emission lines in Active Galactic Nuclei (AGNs) are likely produced in the torus, the inner radius of which can be measured by observing the lag time between the V and K band flux variations. In this paper, we compare the virial products of the infrared time lags, and the narrow Fe Kα widths for 10 type 1 AGNs, with the black hole masses from other techniques. We found the narrow Fe Kα line width is in average 2.6 +0.9−0.4 times broader than expected, assuming an isotropic velocity distribution of the torus at the distance measured by the infrared lags. We propose the thick disk model of the torus may explain the observed larger line width. Another possibility is the contamination by emission from the broad line region or the outer accretion disk. Alternatively, the narrow iron line might originate from the inner most part of the obscuring torus within the sublimation radius, while the infrared emission may be from the outer cooler part. We note the correlations between the black hole masses based on this new technique and those based on other known techniques are statistically insignificant. We argue that this could be attributed to the small sample size and the very large uncertainties in the measurements of iron K line widths. The next generation of X-ray observatories could help verify the origin of the narrow iron Kα line and the reliability of this new technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonucci R. Unified models for active galactic nuclei and quasars. Ann Rev Astron Astrophys, 1993, 31: 473–521

    Article  ADS  Google Scholar 

  2. Jaffe W, Meisenheimer K, Röttgering H J A, et al. The central dusty torus in the active nucleus of NGC 1068. Nature, 2004, 429: 47–49

    Article  ADS  Google Scholar 

  3. Suganuma M, Yoshii Y, Kobayashi Y, et al. The reverberation radius of the central dust hole in NGC 5548. Astrophys J, 2004, 612: L113–L116

    Article  ADS  Google Scholar 

  4. Suganuma M, Yoshii Y, Kobayashi Y, et al. Reverberation measurements of the inner radius of the dust torus in nearby Seyfert 1 Galaxies. Astrophys J, 2006, 639: 46–63

    Article  ADS  Google Scholar 

  5. Nelson B O. A correlated optical-infrared outburst of Markarian 744: The strongest evidence yet for thermal dust reverberation. Astrophys J, 1996, 465: L87–L90

    Article  ADS  Google Scholar 

  6. Pounds K A, Nandra K, Stewart G C, et al. X-ray reflection from cold matter in the nuclei of active galaxies. Nature, 1990, 344: 132–133

    Article  ADS  Google Scholar 

  7. Nandra K, Pounds K A. GINGA observations of the X-Ray spectra of Seyfert galaxies. Mon Not Roy Astron Soc, 1994, 268: 405–429

    ADS  Google Scholar 

  8. Reynolds C S, Nowak M A. Fluorescent iron lines as a probe of astrophysical black hole systems. Phys Rep, 2003, 377: 389–466

    Article  ADS  Google Scholar 

  9. Yaqoob T, Padmanabhan U. The cores of the Fe K lines in Seyfert 1 galaxies observed by the Chandra high energy grating. Astrophys J, 2004, 604: 63–73

    Article  ADS  Google Scholar 

  10. Page K L, O’Brien P T, Reeves J N, et al. An X-ray Baldwin effect for the narrow Fe Kα lines observed in active galactic nuclei. Mon Not Roy Astron Soc, 2004, 347: 316–322

    Article  ADS  Google Scholar 

  11. Jiang P, Wang J X, Wang T G. On the X-Ray Baldwin effect for narrow Fe Kα emission lines. Astrophys J, 2006, 644: 725–732

    Article  ADS  Google Scholar 

  12. Nandra K. On the origin of the iron Kα line cores in active galactic nuclei. Mon Not Roy Astron Soc, 2006, 368: L62–L66

    Article  ADS  Google Scholar 

  13. Blandford R, McKee C F. Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. Astrophys J, 1982, 255: 419–439

    Article  ADS  Google Scholar 

  14. Peterson B M. Reverberation mapping of active galactic nuclei. Publ Astron Soc PAC, 1993, 105: 247–268

    Article  ADS  Google Scholar 

  15. Ferrarese L, Merritt D. A fundamental relation between Supermassive black holes and their host galaxies. Astrophys J, 2000, 539: L9–L12

    Article  ADS  Google Scholar 

  16. Gebhardt K, Bender R, Bower G, et al. A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys J, 2000, 539: L13–L16

    Article  ADS  Google Scholar 

  17. Ferrarese L, Pogge R W, Peterson B M, et al. Supermassive black holes in active galactic nuclei. I. The consistency of black hole masses in quiescent and active galaxies. Astrophys J, 2001, 555: L79–L82

    Google Scholar 

  18. Onken C A, Peterson B M, Dietrich M, et al. Black hole masses in three Seyfert galaxies. Astrophys J, 2003, 585: 121–127

    Article  ADS  Google Scholar 

  19. Onken C A, Ferrarese L, Merritt D, et al. Supermassive black holes in active galactic nuclei. II. Calibration of the black hole mass-velocity dispersion relationship for active galactic nuclei. Astrophys J, 2004, 615: 645–651

    Google Scholar 

  20. Peterson B M, Ferrarese L, Gilbert K M, et al. Central masses and broadline region sizes of active galactic nuclei. II. A homogeneous analysis of a large reverberation-mapping database. Astrophys J, 2004, 613: 682–699

    Google Scholar 

  21. Clavel J, Wamsteker W, Glass I S. Hot dust on the outskirts of the broadline region in Fairall 9. Astrophys J, 1989, 337: 236–250

    Article  ADS  Google Scholar 

  22. Maiolino R, Rieke G H. Low-luminosity and obscured Seyfert nuclei in nearby galaxies. Astrophys J, 1995, 454: 95–105

    Article  ADS  Google Scholar 

  23. Glass I S. Infrared variability of the Seyfert galaxy NGC 3783. Mon Not Roy Astron Soc, 1992, 256: 23–27

    ADS  Google Scholar 

  24. Silk J, Rees MJ. Quasars and galaxy formation. Astron Astrophys, 1998, 331: L1–L4

    ADS  Google Scholar 

  25. Haehnelt M G, Kauffmann G. The correlation between black hole mass and bulge velocity dispersion in hierarchical galaxy formation models. Mon Not Roy Astron Soc, 2000, 318: L35–L38

    Article  ADS  Google Scholar 

  26. Yaqoob T, George I M, Nandra K, et al. Physical diagnostics from a narrow Fe Kα emission line detected by Chandra in the Seyfert 1 galaxy NGC 5548. Astrophys J, 2001, 546: 759–768

    Article  ADS  Google Scholar 

  27. Jefferys W H, Fitzpatrick M J, McArthur B E. GAUSSFIT — A system for least squares and robust estimation. Celest Mech, 1988, 41: 39–49

    ADS  Google Scholar 

  28. Tremaine S, Gebhardt K, Bender R, et al. The slope of the black hole mass versus velocity dispersion correlation. Astrophys J, 2002, 574: 740–753

    Article  ADS  Google Scholar 

  29. Netzer H. In: Blandford R D, Netzer H, Woltjer L, eds. Active Galactic Nuclei. Berlin: Springer, 1990. 137

    Google Scholar 

  30. Yaqoob T, George I M, Kallman T R, et al. Fe XXV and Fe XXVI diagnostics of the black hole and accretion disk in active galaxies: Chandra time-resolved grating spectroscopy of NGC 7314. Astrophys J, 2003, 596: 85–104

    Article  ADS  Google Scholar 

  31. Petrucci P O, Henri G, Maraschi L, et al. A rapidly variable narrow X-ray iron line in Mkn 841. Astron Astrophys, 2002, 388: L5–L8

    Article  ADS  Google Scholar 

  32. Beckert T, Duschl W J. The dynamical state of a thick cloudy torus around an AGN. Astron Astrophys, 2004, 426: 445–454

    Article  ADS  Google Scholar 

  33. Maiolino R, Rieke G H. Low-luminosity and obscured Seyfert nuclei in nearby galaxies. Astrophys J, 1995, 454: 95–105

    Article  ADS  Google Scholar 

  34. Cackett E M, Horne K. Photoionized Hβ emission in NGC 5548: it breathes! Mon Not Roy Astron Soc, 2006, 365: 1180–1190

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Jiang.

Additional information

Recommended by WANG JunXian (Editorial Board Member)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, P., Wang, J. & Shu, X. Weighing super-massive black holes with narrow Fe Kα line. Sci. China Phys. Mech. Astron. 54, 1354–1358 (2011). https://doi.org/10.1007/s11433-011-4352-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4352-7

Keywords

Navigation