Skip to main content
Log in

Quantum conductance of armchair carbon nanocoils: roles of geometry effects

  • Research Paper
  • Multiscale Modeling & Simulation of Materials
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a π-orbital TB model incorporated with the non-equilibrium Green’s function theory. Compared with the perfect armchair carbon nanotubes (CNTs) and armchair CNTs with only Stone-Wales (SW) defects, the quantum conductance spectra of the armchair CNCs present distinct gaps around the Fermi level, which are mainly originated from the existence of sp3 carbon in the three-dimensional spiral structures. Moreover, the detailed conductance spectra of the armchair CNCs depend sensitively on their geometric parameters, such as tubular diameter and block-block distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunlap B I. Connecting carbon tubules. Phys Rev B, 1992, 46: 1933–1936

    Article  ADS  Google Scholar 

  2. Ihara S, Itoh S, Kitakami J-i. Helically coiled cage forms of graphitic carbon. Phys Rev B, 1993, 48: 5643–5647

    Article  ADS  Google Scholar 

  3. Amelinckx S, Zhang X B, Bernaerts D, et al. A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science, 1994, 265: 635–639

    Article  ADS  Google Scholar 

  4. Zhang X B, Zhang X F, Bernaerts D, et al. The texture of catalytically grown coil-shaped carbon nanotubules. Europhys Lett, 1994, 27: 141

    Article  ADS  Google Scholar 

  5. Akagi K, Tamura R, Tsukada M, et al. Electronic structure of helically coiled cage of graphitic carbon. Phys Rev Lett, 1995, 74: 2307–2310

    Article  ADS  Google Scholar 

  6. Akagi K, Tamura R, Tsukada M, et al. Electron and hole g factors measured by spin-flip Raman scattering in CdTe/Cd1−x MgxTe single quantum wells. Phys Rev B, 1996, 53: 2114–2120

    Article  ADS  Google Scholar 

  7. Lu W G. Quantum conductance of a helically coiled carbon nanotube. Sci Technol Adv Mater, 2005, 6: 809–814

    Article  Google Scholar 

  8. Hayashida T, Pan L, Nakayama Y. Mechanical and electrical properties of carbon tubule nanocoils. Physica B-Condens Matter, 2002, 323: 352–353

    Article  ADS  Google Scholar 

  9. Volodin A, Ahlskog M, Seynaeve E, et al. Imaging the elastic properties of coiled carbon nanotubes with atomic force microscopy. Phys Rev Lett, 2000, 84: 3342–3345

    Article  ADS  Google Scholar 

  10. Chen X Q, Zhang S L, Dikin D A, et al. Mechanics of a carbon nanocoil. Nano Lett, 2003, 3: 1299–1304

    Article  ADS  Google Scholar 

  11. da Fonseca A F, Malta C P, Galvao D S. Mechanical properties of amorphous nanosprings. Nanotechnology, 2006, 17: 5620–5526

    Article  Google Scholar 

  12. Sanada K, Takada Y, Yamamoto S, et al. Analytical and experimental characterization of stiffness and damping in carbon nanocoil reinforced polymer composites. J Solid Mech Mater Eng, 2008, 2: 1517–1527

    Article  Google Scholar 

  13. Qi X, Zhong W, Deng Y, et al. Synthesis of helical carbon nanotubes, worm-like carbon nanotubes and nanocoils at 450°C and their magnetic properties. Carbon, 2010, 48: 365–376

    Article  Google Scholar 

  14. Tang N, Wen J, Zhang Y, et al. Helical carbon nanotubes: catalytic particle size-dependent growth and magnetic properties. ACS Nano, 2010, 4: 241–250

    Article  Google Scholar 

  15. Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes. Nature, 1996, 382: 54–56

    Article  ADS  Google Scholar 

  16. Liu L, Gao H, Zhao J, et al. Superelasticity of carbon nanocoils from atomistic quantum simulations. Nanoscale Res Lett, 2010, 5: 478–483

    Article  ADS  Google Scholar 

  17. Zhao J, Guo X, Wen B. A nonorthogonal tight-binding model for hydrocarbon molecules and nanostructures. Mol Simulat, 2007, 33: 703–709

    Article  Google Scholar 

  18. Garcia-Moliner F, Velasco V R. Matching methods for single and multiple interfaces: Discrete and continuous media. Phys Rep, 1991, 200: 83–125

    Article  ADS  Google Scholar 

  19. Bratkovsky A M, Sutton A P, Todorov T N. Conditions for conductance quantization in realistic models of atomic-scale metallic contacts. Phys Rev B, 1995, 52: 5036–5051

    Article  ADS  Google Scholar 

  20. Datta S. Electronic Transport in Mesoscopic Systems. Cambridge: Cambridge Univ Press, 1995

    Google Scholar 

  21. Buldum A, Lu J P. Contact resistance between carbon nanotubes. Phys Rev B, 2001, 63: 161403 (R)

    Article  ADS  Google Scholar 

  22. Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 1992, 45: 13244–13249

    Article  ADS  Google Scholar 

  23. Delley B J. An All-Electron Numerical method for solving the local density functional for polyatomic molecule. Chem Phys, 1990, 92: 508–518

    ADS  Google Scholar 

  24. Choi H J, Ihm J, Louie S G, et al. Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys Rev Lett, 2000, 84: 2917–2920

    Article  ADS  Google Scholar 

  25. Andriotis A N, Menon M, Srivastava D. Transfer matrix approach to quantum conductivity calculations in single-wall carbon nanotubes. J Chem Phys, 2002, 117: 2836–2843

    Article  ADS  Google Scholar 

  26. Yamamoto T, Watanabe K. Nonequilibrium Green’s function aprroach to phonon transport in defective carbon nanotubes. Phys Rev Lett, 2006, 96: 255503

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiJun Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Gao, H., Zhao, J. et al. Quantum conductance of armchair carbon nanocoils: roles of geometry effects. Sci. China Phys. Mech. Astron. 54, 841–845 (2011). https://doi.org/10.1007/s11433-011-4315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4315-z

Keywords

Navigation