Skip to main content
Log in

Electromechanical cracking in ferroelectrics driven by large scale domain switching

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Experimental results indicate three regimes for cracking in a ferroelectric double cantilever beam (DCB) under combined electromechanical loading. In the loading, the maximum amplitude of the applied electric field reaches almost twice the coercive field of ferroelectrics. Thus, the model of small scale domain switching is not applicable any more, which is dictated only by the singular term of the crack tip field. In the DCB test, a large or global scale domain switching takes place instead, which is driven jointly by both the singular and non-singular terms of the crack-tip electric field. Combining a full field solution with an energy based switching criterion, we obtain the switching zone by the large scale model around the tip of a stationary impermeable crack. It is observed that the switching zone by the large scale model is significantly different from that by the small scale model. According to the large scale switching zone, the switch-induced stress intensity factor (SIF) and the transverse stress (T-stress) are evaluated numerically. Via the SIF and T-stress induced by the combined loading and corresponding criteria, we address the crack initiation and crack growth stability simultaneously. The two theoretical predictions roughly coincide with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao H C, Evans A G. Electric-field-induced fatigue crack growth in piezoelectrics. J Am Ceram Soc, 1994, 77: 1783–1786

    Article  Google Scholar 

  2. Park S, Sun C T. Fracture criteria for piezoelectric ceramics. J Am Ceram Soc, 1995, 78: 1475–1480

    Article  Google Scholar 

  3. Lynch C S, Yang W, Collier L, et al. Electric field induced cracking in ferroelectric ceramics. Ferroelectrics, 1995, 166: 11–30

    Article  Google Scholar 

  4. Wang H, Singh R N. Crack propagation in piezoelectric ceramics: effects of applied electric field. J Appl Phys, 1997, 81: 7471–7479

    Article  ADS  Google Scholar 

  5. Weitzing H, Schneider G A, Steffens J, et al. Cyclic fatigue due to electric loading in ferroelectric ceramics. J Eur Ceram Soc, 1999, 19: 1333–1337

    Article  Google Scholar 

  6. Zhu T, Fang F, Yang W. Fatigue crack growth in ferroelectric ceramics below the coercive field. J Mater Sci Lett, 1999, 18: 1025–1027

    Article  Google Scholar 

  7. Fu R, Zhang T Y. Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics. J Am Ceram Soc, 2000, 83: 1215–1218

    Article  Google Scholar 

  8. Fang D N, Liu B, Sun C T. Fatigue crack growth in ferroelectric ceramics driven by alternating electric fields. J Am Ceram Soc, 2004, 87: 840–846

    Article  Google Scholar 

  9. Jelitto H, Kessler H, Schneider G A, et al. Fracture behavior of poled piezoelectric PZT under mechanical and electrical loads. J Eur Ceram Soc, 2005, 25: 749–757

    Article  Google Scholar 

  10. Shieh J, Huber J E, Fleck N A. Fatigue crack growth in ferroelectrics under electrical loading. J Eur Ceram Soc, 2006, 26: 95–109

    Article  Google Scholar 

  11. Narita F, Shindo Y, Saito F. Cyclic fatigue crack growth in three-point bending PZT ceramics under electromechanical loading. J Am Ceram Soc, 2007, 90: 2517–2524

    Article  Google Scholar 

  12. Westram I, Lupascu D, Rödel J, et al. Electric-field-induced crack initiation from a notch in a ferroelectric ceramic. J Am Ceram Soc, 2007, 90: 2849–2854

    Article  Google Scholar 

  13. Fang F, Yang W, Zhang F C, et al. Electric field-induced crack growth and domain-structure evolution for [100]- and [101]-oriented 72Mg1/3Nb2/3)O-3-28 ferroelectric single crystals. J Mater Res, 2008, 23: 3387–3395

    Article  ADS  Google Scholar 

  14. Pojprapai S, Russell J, Man H, et al. Frequency effects on fatigue crack growth and crack tip domain-switching behavior in a lead zirconate titanate ceramic. Acta Mater, 2009, 57: 3932–3940

    Article  Google Scholar 

  15. Yang W. Mechatronic Reliability. Berlin: Tsinghua University Press and Springer-Verlag, 2002

    Google Scholar 

  16. Schneider G A. Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Annu Rev Mater Res, 2007, 37: 491–538

    Article  ADS  Google Scholar 

  17. Lu W, Fang D N, Li C Q, et al. Nonlinear electric-mechanical behavior and micromechanics modeling of ferroelectric domain evolution. Acta Mater, 1999, 47: 2913–2926

    Article  Google Scholar 

  18. Huber J E, Fleck N A. Multi-axial electrical switching of a ferroelectric: theory versus experiment. J Mech Phys Solids, 2001, 49: 785–811

    Article  ADS  MATH  Google Scholar 

  19. Kamlah M. Ferroelectric and ferroelastic piezoceramics — modeling of electromechanical hysteresis phenomena. Continuum Mech Thermodyn, 2001, 13: 219–268

    Article  ADS  MATH  Google Scholar 

  20. Shieh J, Huber J E, Fleck N A. An evaluation of switching criteria for ferroelectrics under stress and electric field. Acta Mater, 2003, 51: 6123–6137

    Article  Google Scholar 

  21. Landis C M. On the fracture toughness anisotropy of mechanically poled ferroelectric ceramics. Int J Fract, 2004, 126: 1–16

    Article  MATH  Google Scholar 

  22. Zhang W, Bhattacharya K. A computational model of ferroelectric domains. Part I: Model formulation and domain switching. Acta Mater, 2005, 53: 185–198

    Article  Google Scholar 

  23. Li Y C. Nonlinear constitutive law for ferroelectric/ferroelastic material and its finite element realization. Sci China Ser G-Phys Mech Astron, 2007, 50: 70–86

    Article  ADS  MATH  Google Scholar 

  24. Li H J, Liu F, Wang T C. Nonlinear constitutive behavior of ferroelectric materials. Sci China Ser G-Phys Mech Astron, 2008, 51: 1339–1356

    Article  ADS  MATH  Google Scholar 

  25. Hwang S C, Lynch C S, McMeeking R M. Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall Mater, 1995, 43: 2073–2084

    Article  Google Scholar 

  26. Zhu T, Yang W. Toughness variation of ferroelectrics by polarization switch under nonuniform electric field. Acta Mater, 1997, 41: 4695–4702

    Article  Google Scholar 

  27. Reece M J, Guiu F. Toughening produced by crack-tip-stress-induced domain reorientation in ferroelectric and/or ferroelastic materials. Philos Mag A, 2002, 82: 29–38

    Article  ADS  Google Scholar 

  28. Kalyanam S, Sun C T. Modeling the fracture behavior of piezoelectric materials using a gradual polarization switching model. Mech Mater, 2009, 41: 520–534

    Article  Google Scholar 

  29. McMeeking R M, Evans A G. Mechanics of transformation-toughening in brittle materials. J Am Ceram Soc, 1982, 65: 242–246

    Article  Google Scholar 

  30. Yang W, Zhu T. Switch-toughening of ferroelectrics subjected to electric fields. J Mech Phys Solids, 1998, 46: 291–311

    Article  ADS  MATH  Google Scholar 

  31. Zhu T, Yang W. Fatigue crack growth in ferroelectrics driven by cyclic electric loading. J Mech Phys Solids, 1999, 47: 81–97

    Article  ADS  MATH  Google Scholar 

  32. Fang F, Yang W. Poling enhanced fracture resistance of lead zirconate titanate ferroelectric ceramics. Mater Lett, 2000, 46: 131–135

    Article  MathSciNet  Google Scholar 

  33. Zeng X, Rajapakse R. Domain switching induced fracture toughness variation in ferroelectrics. Smart Mater Struct, 2001, 10: 203–211

    Article  ADS  Google Scholar 

  34. Beom H G, Atluri S N. Effect of electric fields on fracture behavior of ferroelectric ceramics. J Mech Phys Solids, 2003, 51: 1107–1125

    Article  ADS  MATH  Google Scholar 

  35. Ricoeur A, Kuna M. A micromechanical model for the fracture process zone in ferroelectrics. Comput Mater Sci, 2003, 27: 235–249

    Article  Google Scholar 

  36. Mao G Z, Fang D N. Fatigue crack growth induced by domain switching under electromechanical load in ferroelectrics. Theor Appl Fract Mech, 2004, 41: 115–123

    Article  Google Scholar 

  37. Kuna M. Fracture mechanics of piezoelectric materials-where are we right now? Eng Fract Mech, 2010, 77: 309–326

    Article  Google Scholar 

  38. Westram I, Ricoeur A, Emrich A, et al. Fatigue crack growth law for ferroelectrics under cyclic electrical and combined electromechanical loading. J Eur Ceram Soc, 2007, 27: 2485–2494

    Article  Google Scholar 

  39. Kanninen M F. An augmented double cantilever beam model for studying crack propagation and arrest. Int J Fract, 1973, 9: 83–92

    Google Scholar 

  40. Murakami Y (ed.). Stress Intensity Factors Handbook. Oxford: Pergamon Press, 1987

    Google Scholar 

  41. Yang W, Suo Z. Cracking in ceramics actuators caused by electrostriction. J Mech Phys Solids, 1994, 42: 649–663

    Article  ADS  Google Scholar 

  42. Cui Y Q, Zhong Z. Large scale domain switching around the tip of an impermeable stationary crack in ferroelectric ceramics driven by near-coercive electric field. Sci China Phys Mech Astron, 2011, 54: 121–126

    Article  ADS  Google Scholar 

  43. Tada H, Paris P C, Irwin G R. The Stress Analysis of Cracks Handbook. St. Louis: Del Research Corporation, 1973

    Google Scholar 

  44. Williams M L. On stress distribution at the base of a stationary crack. J. Appl Mech-Trans ASME, 1957, 24: 109–114

    MATH  Google Scholar 

  45. Cotterell B, Rice J R. Slightly curved or kinked cracks. Int J Fract, 1980, 16: 155–169

    Article  Google Scholar 

  46. Leevers P S, Radon J C. Inherent stress biaxiality in various fracture specimen geometries. Int J Fract, 1982, 9: 311–325

    Article  Google Scholar 

  47. Sherry A H, France C C, Goldthorpe M R. Compendium of T-stress solutions for two and three dimensional cracked geometries. Fatigue Fract Eng Mater Struct, 1995, 18: 141–155

    Article  Google Scholar 

  48. Cui Y Q. Interplay between fracture and domain switching of ferroelectrics. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2005

    Google Scholar 

  49. Fett T. Compendium of T-stress solutions. Technik und Umwelt Wissenschaftliche Berichte, FZKA 6057, 1998

  50. Sham T L. The determination of the elastic T-term using higher order weight functions. Int J Fract, 1991, 48: 81–102

    Article  Google Scholar 

  51. Zhou D Y. Experimental investigation of non-linear constitutive behavior of PZT piezoceramics. Dissertation for the Doctoral Degree, Karlsruhe: Karlsruhe University, 2003.

    Google Scholar 

  52. Hackemann S, Pfeiffer W. Domain switching in process zones of PZT: Characterization by microdiffraction and fracture mechanical methods. J Eur Ceram Soc, 2003, 23: 141–151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang.

Additional information

Contributed by YANG Wei

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Yang, W. Electromechanical cracking in ferroelectrics driven by large scale domain switching. Sci. China Phys. Mech. Astron. 54, 957–965 (2011). https://doi.org/10.1007/s11433-011-4308-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4308-y

Keywords

Navigation