Abstract
Device modeling is constructive in finding the dependency of devices efficiency on structure parameters and material properties. For the sake of looking into the physics mechanism of organic solar cells (OSCs), as well as predicting their maximum attainable efficiency, numerical modeling is widely utilized to simulate the behavior of OSCs. Although some indispensable parameters are neglected or hypothesized because of inexplicitness in simulation models for OSCs, numerical modeling can describe the kinetic process in OSCs intuitively. This paper summarizes the optical/electrical models in the BHJ solar cell, as well as addresses their corresponding development in recent years on the basis of device physics and its working principle. Applications of numerical modeling and comments on modeling results are summarized. Meanwhile, precision and open questions about every model are discussed.
References
Park S H, Roy A, Beaupré S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photon, 2009, 3: 297–302
Liang Y Y, Feng D Q, Wu Y, et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J Am Chem Soc, 2009, 131: 7792–7799
Liang Y Y, Xu Z, Xia J B, et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater, 2010, 22: E135–E138
Kallmann H, Pope M. Photovoltaic effect in organic crystals. J Chem Phys, 1959, 30: 585–586
Tang C W. 2-layer organic photovoltaic cell. Appl Phys Lett, 1986, 48: 183–185
Peumans P, Yakimov A, Forrest S R. Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 2003, 93: 3693–3723
Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells-enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270: 1789–1791
Blom W M, Mihailetchi V D, Koster L J A, et al. Device physics of polymer: Fullerene bulk heterojunction solar cells. Adv Mater, 2007, 19: 1551–1566
Mi B X, Gao Z Q, Deng X Y, et al. Recent progress of organic solar cell materials and devices. Sci China Ser B-Chem, 2008, 38: 957–975
Hoppe H, Sariciftci N S. Polymer solar cells. Adv Polym Sci, 2008, 214: 1–86
Persson N K, Schubert M, Inganäs O. Optical modeling of a layered photovoltaic device with a polyfluorene derivative/fullerene as the active layer. Sol Energy Mater Sol Cells, 2004, 83: 169–186
Pettersson L A A, Roman L S, Inganäs O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J Appl Phys, 1999, 86: 487–496
Heavens O S. Optical Properties of Thin Solid Films. New York: Dover, 1965
Hoppe H, Arnold N, Sariciftci N S, et al. Modeling the optical absorption within conjugated polymer/fullerene-based bulk-hetero-junction organic solar cell. Sol Energy Mater Sol Cells, 2003, 80: 105–113
Persson N K, Arwin H, Inganäs O. Optical optimization of polyfluorene-fullerene blend photodiodes. J Appl Phys, 2005, 97: 034503
Moule A J, Bonekamp J B, Meerholz K. The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells. J Appl Phys, 2006, 100: 094503
Sievers D W, Shrotriya V, Yang Y. Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. J Appl Phys, 2006, 100: 114509
Moule A J, Meerholz K. Minimizing optical losses in bulk heterojunction polymer solar cells. Appl Phys B, 2007, 86: 721–727
Monestier F, Simon J J, Torchio P, et al. Optical modeling of organic solar cells based on CuPc and C60. Appl Opt, 2008, 47: C251–C256
Kotlarski J D, Blom P W M, Koster L J A, et al. Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells. J Appl Phys, 2008, 103: 084502
Ameri T, Dennler G, Waldauf C, et al. Fabrication, optical modeling, and color characterization of semitransparent bulk-heterojunction organic solar cells in an inverted structure. Adv Func Mater, 2010, 20: 1592–1598
Koster L J A, Smits E C P, Mihailetchi V D, et al. Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys Rev B, 2005, 72: 085205
Gommans H H P, Kemerink M, Kramer J M, et al. Field and temperature dependence of the photocurrent in polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett, 2005, 87: 122104
Lacic S, Inganäs O. Modeling electrical transport in blend heterojunction organic solar cells. J Appl Phys, 2005, 97: 124901
Glatthaar M, Riede M, Keegan N, et al. Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy. Sol Energy Mater Sol Cells, 2007, 91: 390–393
Kirchartz T, Pieters B E, Taretto K, et al. Electro-optical modeling of bulk heterojunction solar cells. J Appl Phys, 2008, 104: 094513
Deibel C, Baumann A, Dyakonov V. Polaron pair dissociation and polaron recombination in polymer:fullerene solar cells. Mater Res Soc Symp Proc, 2008, 1031E: 1031–H09-21
Ruhstaller B, Flatz T, Rezzonico D, et al. Comprehensive simulation of light-emitting and light-harvesting organic devices. Organ Light Emitting Mater Devices XII, 2008, 7051: 70510J
Gregg B A, Hanna M C. Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. J Appl Phys, 2003, 93: 3605–3614
Selberherr S. Analysis and Simulation of Semiconductor Devices. Wien: Springer-Verlag, 1984
Barker J A, Ramsdale C M, Greenham N C. Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices. Phys Rev B, 2003, 67: 075205
Onsager L. Initial recombination of ions. Phys Rev, 1938, 54: 554–557
Braun C L. Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. J Phys Chem, 1984, 80: 4157–4161
Mandoc M M, Veurman W, Koster L J A, et al. Origin of the reduced fill factor and photocurrent in MDMO-PPV:PCNEPV all-polymer solar cells. Adv Func Mater, 2007, 17: 2167–2173
Morana M, Wegscheider M, Bonanni A, et al. Bipolar charge transport in PCPDTBT-PCBM bulk-heterojunctions for photovoltaic applications. Adv Func Mater, 2008, 18: 1757–1766
Schafferhans J, Baumann A, Deibel C, et al. Bipolar charge transport in PCPDTBT-PCBM bulk-heterojunctions for photovoltaic applications. Appl Phys Lett, 2008, 93: 093303
Pivrikas A, Juška G, Mozer A J, et al. Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials. Phys Rev Lett, 2005, 94: 176806
Pivrikas A, Sariciftci N S, Juška G, et al. A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog Photovolt-Res Appl, 2007, 15: 677–696
Scott J C, Malliaras G G. Charge injection and recombination at the metal-organic interface. Chem Phys Lett, 1999, 299: 115–119
Ooi Z E, Jin R, Huang J, et al. On the pseudo-symmetric current-voltage response of bulk heterojunction solar cells. Mater Chem, 2008, 18: 1605–1651
Shockley W, Reed W T. Statistics of the recombinations of holes and electrons. Phys Rev, 1952, 87: 835–842
Hall R N. Electron-hole recombination in germanium. Phys Rev, 1952, 87: 387–388
Kao K C, Hwang W. Electrical Transport in Solids. Oxford: Pergamon Press, 1981
Braun C L. Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. J Chem Phys, 1984, 80: 4157–4161
Ann L P. Recombmaison et mobilites des ions dans les gaz. Chim Phys, 1903, 28: 433–452
Deibel C, Wagenpfahl A, Dykonov V. Influence of charge carrier mobility on the performance of organic solar cells. Phys Stat Sol, 2008, 2: 175–177
Deibel C, Wagenpfahl A, Dyakonov V. Origin of reduced polaron recombination in organic semiconductor devices. Phys Rev B, 2009, 80: 075203
Kirchartz T, Pieters B E, Taretto K, et al. Mobility dependent efficiencies of organic bulk heterojunction solar cells: Surface recombination and charge transfer state distribution. Phys Rev B, 2009, 80: 035334
Kirchartz T, Taretto K, Rau U. Efficiency limits of organic bulk heterojunction solar cells. J Phys Chem C, 2009, 113: 17958
Williams J, Walker A B. Two-dimensional simulations of bulk heterojunction solar cell characteristics. Nanotechnology, 2008, 19: 424011
Buxton G A, Clarke N. Predicting structure and property relations in polymeric photovoltaic devices. Phys Rev B, 2006, 74: 085207
Buxton G A, Clarke N. Computer simulation of polymer solar cells. Modelling Simul Mater Sci Eng, 2007, 15: 13–26
Martin C M, Burlakov V M, Assender H E, et al. A numerical model for explaining the role of the interface morphology in composite solar cells. J Appl Phys, 2007, 102: 104506
Marsh R A, Groves C, Greenham N C. A microscopic model for the behavior of nanostructured organic photovoltaic devices. J Appl Phys, 2007, 101: 083509
Offermans T, Meskers S C J, Janssen R A J. Monte-Carlo simulations of geminate electron-hole pair dissociation in a molecular heterojunction: A two-step dissociation mechanism. Chem Phys, 2005, 308: 125–133
Peumans P, Forrest S R. Separation of geminate charge-pairs at donor-acceptor interfaces in disordered solids. Chem Phys Lett, 2004, 398: 27–31
Watkins P K, Walker A B, Verschoor G L B. Dynamical Monte Carlo modelling of organic solar cells: The dependence of internal quantum efficiency on morphology. Nano Lett, 2005, 5: 1814–1818
Yang S, Forrest S R. Photocurrent generation in nanostructured organic solar cells. ACS Nano, 2008, 2: 1022–1032
Deibel C. Charge carrier dissociation and recombination in polymer solar cells. Phys Status Solidi A, 2009, 206: 2731–2736
Deibel C, Strobel T, Dyakonov V. Origin of the efficient polaron-pair dissociation in polymer-fullerene blends. Phys Rev Lett, 2009, 103: 036402
Maturová K, van Bavel S S, Wienk M M, et al. Morphology device model for organic bulk heterojunction solar cells. Nano Lett, 2009, 9: 3032–3037
Gummel H K. A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans Electron Devices, ED-11, 1964: 455–465
Monestier F, Simon J J, Torchio P, et al. Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend. Sol Energy Mater Sol Cells, 2007, 91: 405–410
Hadipour A, de Boer B, Blom P W M. Organic tandem and multi-junction solar cells. Adv Funct Mater, 2008, 18: 169–181
Persson N K, Inganäs O. Organic tandem solar cells-modelling and predictions. Sol Energy Mater Sol Cells, 2006, 90: 3491–3507
Eerenstein W, Slooff L H, Veenstra S C, et al. Optical modeling as optimization tool for single and double junction polymer solar cells. Thin Solid Films, 2008, 516: 7188–7192
Slooff L H, Veenstra S C, Kroon J M, et al. Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modelling. Appl Phys Lett, 2007, 90: 143506
Koster L J A, Mihailetchi V D, Xie H, et al. Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells. Appl Phys Lett, 2005, 87: 203502
Koster L J A, Mihailetchi V D, Ramaker R, et al. Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Appl Phys Lett, 2005, 86: 123509
Koster L J A, Mihailetchi V D, Blom P W M. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett, 2006, 88: 093511
Shorckley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32: 510–519
Bisquert J, Belmonte G G, Munar A, et al. Band unpinning and photovoltaic model for P3HT-PCBM organic bulk heterojunctions under illumination. Chem Phys Lett, 2008, 465: 57–62
Haerter J O, Chasteen S V, Carter S A, et al. Numerical simulations of layered and blended organic photoboltaic cells. Appl Phys Lett, 2005, 86: 164101
Mandoc M M, Koster L J A, Blom P W M. Optimum charge carrier mobility in organic solar cells. Appl Phys Lett, 2007, 90: 133504
Chen L M, Hong Z, Li G, et al. Recent progress in polymer solar cells: Manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells. Adv Mater, 2009, 21: 1434–1449
Koppe M, Scharber M, Brabec C, et al. Polyterthiophenes as donors for polymer solar cells. Funct Mater, 2007, 17: 1371–1376
Ma W, Gopinathan A, Heeger A J. Nanostructure of the interpenetrating networks in Poly(3-hexylthiophene)/fullerene bulk heterojunction materials: Implications for charge transport. Adv Mater, 2007, 19: 3656–3659
Mihailetchi V D, Koster L J A, Hummelen J C, et al. Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys Rev Lett, 2004, 93: 216601
Halls J J M, Walsh C A, Greenham N C, et al. Efficient photodiodes from interpenetrating polymer networks. Nature, 1995, 376: 498–499
Gommans H H P, Kemerink M, Kramer J M, et al. Field and temperature dependence of the photocurrent in polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett, 2005, 87: 122104
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Zhao, X., Mi, B., Gao, Z. et al. Recent progress in the numerical modeling for organic thin film solar cells. Sci. China Phys. Mech. Astron. 54, 375–387 (2011). https://doi.org/10.1007/s11433-011-4248-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11433-011-4248-6