Skip to main content
Log in

Recent progress in the numerical modeling for organic thin film solar cells

Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Device modeling is constructive in finding the dependency of devices efficiency on structure parameters and material properties. For the sake of looking into the physics mechanism of organic solar cells (OSCs), as well as predicting their maximum attainable efficiency, numerical modeling is widely utilized to simulate the behavior of OSCs. Although some indispensable parameters are neglected or hypothesized because of inexplicitness in simulation models for OSCs, numerical modeling can describe the kinetic process in OSCs intuitively. This paper summarizes the optical/electrical models in the BHJ solar cell, as well as addresses their corresponding development in recent years on the basis of device physics and its working principle. Applications of numerical modeling and comments on modeling results are summarized. Meanwhile, precision and open questions about every model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Park S H, Roy A, Beaupré S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photon, 2009, 3: 297–302

    Article  ADS  Google Scholar 

  2. Liang Y Y, Feng D Q, Wu Y, et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J Am Chem Soc, 2009, 131: 7792–7799

    Article  Google Scholar 

  3. Liang Y Y, Xu Z, Xia J B, et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater, 2010, 22: E135–E138

    Article  Google Scholar 

  4. Kallmann H, Pope M. Photovoltaic effect in organic crystals. J Chem Phys, 1959, 30: 585–586

    Article  ADS  Google Scholar 

  5. Tang C W. 2-layer organic photovoltaic cell. Appl Phys Lett, 1986, 48: 183–185

    Article  ADS  Google Scholar 

  6. Peumans P, Yakimov A, Forrest S R. Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 2003, 93: 3693–3723

    Article  ADS  Google Scholar 

  7. Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells-enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270: 1789–1791

    Article  ADS  Google Scholar 

  8. Blom W M, Mihailetchi V D, Koster L J A, et al. Device physics of polymer: Fullerene bulk heterojunction solar cells. Adv Mater, 2007, 19: 1551–1566

    Article  Google Scholar 

  9. Mi B X, Gao Z Q, Deng X Y, et al. Recent progress of organic solar cell materials and devices. Sci China Ser B-Chem, 2008, 38: 957–975

    Google Scholar 

  10. Hoppe H, Sariciftci N S. Polymer solar cells. Adv Polym Sci, 2008, 214: 1–86

    Google Scholar 

  11. Persson N K, Schubert M, Inganäs O. Optical modeling of a layered photovoltaic device with a polyfluorene derivative/fullerene as the active layer. Sol Energy Mater Sol Cells, 2004, 83: 169–186

    Article  Google Scholar 

  12. Pettersson L A A, Roman L S, Inganäs O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J Appl Phys, 1999, 86: 487–496

    Article  ADS  Google Scholar 

  13. Heavens O S. Optical Properties of Thin Solid Films. New York: Dover, 1965

    Google Scholar 

  14. Hoppe H, Arnold N, Sariciftci N S, et al. Modeling the optical absorption within conjugated polymer/fullerene-based bulk-hetero-junction organic solar cell. Sol Energy Mater Sol Cells, 2003, 80: 105–113

    Article  Google Scholar 

  15. Persson N K, Arwin H, Inganäs O. Optical optimization of polyfluorene-fullerene blend photodiodes. J Appl Phys, 2005, 97: 034503

    Article  ADS  Google Scholar 

  16. Moule A J, Bonekamp J B, Meerholz K. The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells. J Appl Phys, 2006, 100: 094503

    Article  ADS  Google Scholar 

  17. Sievers D W, Shrotriya V, Yang Y. Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. J Appl Phys, 2006, 100: 114509

    Article  ADS  Google Scholar 

  18. Moule A J, Meerholz K. Minimizing optical losses in bulk heterojunction polymer solar cells. Appl Phys B, 2007, 86: 721–727

    Article  ADS  Google Scholar 

  19. Monestier F, Simon J J, Torchio P, et al. Optical modeling of organic solar cells based on CuPc and C60. Appl Opt, 2008, 47: C251–C256

    Article  ADS  Google Scholar 

  20. Kotlarski J D, Blom P W M, Koster L J A, et al. Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells. J Appl Phys, 2008, 103: 084502

    Article  ADS  Google Scholar 

  21. Ameri T, Dennler G, Waldauf C, et al. Fabrication, optical modeling, and color characterization of semitransparent bulk-heterojunction organic solar cells in an inverted structure. Adv Func Mater, 2010, 20: 1592–1598

    Article  Google Scholar 

  22. Koster L J A, Smits E C P, Mihailetchi V D, et al. Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys Rev B, 2005, 72: 085205

    Article  ADS  Google Scholar 

  23. Gommans H H P, Kemerink M, Kramer J M, et al. Field and temperature dependence of the photocurrent in polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett, 2005, 87: 122104

    Article  ADS  Google Scholar 

  24. Lacic S, Inganäs O. Modeling electrical transport in blend heterojunction organic solar cells. J Appl Phys, 2005, 97: 124901

    Article  ADS  Google Scholar 

  25. Glatthaar M, Riede M, Keegan N, et al. Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy. Sol Energy Mater Sol Cells, 2007, 91: 390–393

    Article  Google Scholar 

  26. Kirchartz T, Pieters B E, Taretto K, et al. Electro-optical modeling of bulk heterojunction solar cells. J Appl Phys, 2008, 104: 094513

    Article  ADS  Google Scholar 

  27. Deibel C, Baumann A, Dyakonov V. Polaron pair dissociation and polaron recombination in polymer:fullerene solar cells. Mater Res Soc Symp Proc, 2008, 1031E: 1031–H09-21

    Google Scholar 

  28. Ruhstaller B, Flatz T, Rezzonico D, et al. Comprehensive simulation of light-emitting and light-harvesting organic devices. Organ Light Emitting Mater Devices XII, 2008, 7051: 70510J

    Google Scholar 

  29. Gregg B A, Hanna M C. Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. J Appl Phys, 2003, 93: 3605–3614

    Article  ADS  Google Scholar 

  30. Selberherr S. Analysis and Simulation of Semiconductor Devices. Wien: Springer-Verlag, 1984

    Book  Google Scholar 

  31. Barker J A, Ramsdale C M, Greenham N C. Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices. Phys Rev B, 2003, 67: 075205

    Article  ADS  Google Scholar 

  32. Onsager L. Initial recombination of ions. Phys Rev, 1938, 54: 554–557

    Article  ADS  Google Scholar 

  33. Braun C L. Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. J Phys Chem, 1984, 80: 4157–4161

    Article  Google Scholar 

  34. Mandoc M M, Veurman W, Koster L J A, et al. Origin of the reduced fill factor and photocurrent in MDMO-PPV:PCNEPV all-polymer solar cells. Adv Func Mater, 2007, 17: 2167–2173

    Article  Google Scholar 

  35. Morana M, Wegscheider M, Bonanni A, et al. Bipolar charge transport in PCPDTBT-PCBM bulk-heterojunctions for photovoltaic applications. Adv Func Mater, 2008, 18: 1757–1766

    Article  Google Scholar 

  36. Schafferhans J, Baumann A, Deibel C, et al. Bipolar charge transport in PCPDTBT-PCBM bulk-heterojunctions for photovoltaic applications. Appl Phys Lett, 2008, 93: 093303

    Article  ADS  Google Scholar 

  37. Pivrikas A, Juška G, Mozer A J, et al. Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials. Phys Rev Lett, 2005, 94: 176806

    Article  ADS  Google Scholar 

  38. Pivrikas A, Sariciftci N S, Juška G, et al. A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog Photovolt-Res Appl, 2007, 15: 677–696

    Article  Google Scholar 

  39. Scott J C, Malliaras G G. Charge injection and recombination at the metal-organic interface. Chem Phys Lett, 1999, 299: 115–119

    Article  ADS  Google Scholar 

  40. Ooi Z E, Jin R, Huang J, et al. On the pseudo-symmetric current-voltage response of bulk heterojunction solar cells. Mater Chem, 2008, 18: 1605–1651

    Article  Google Scholar 

  41. Shockley W, Reed W T. Statistics of the recombinations of holes and electrons. Phys Rev, 1952, 87: 835–842

    Article  ADS  MATH  Google Scholar 

  42. Hall R N. Electron-hole recombination in germanium. Phys Rev, 1952, 87: 387–388

    Article  ADS  Google Scholar 

  43. Kao K C, Hwang W. Electrical Transport in Solids. Oxford: Pergamon Press, 1981

    Google Scholar 

  44. Braun C L. Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. J Chem Phys, 1984, 80: 4157–4161

    Article  ADS  Google Scholar 

  45. Ann L P. Recombmaison et mobilites des ions dans les gaz. Chim Phys, 1903, 28: 433–452

    Google Scholar 

  46. Deibel C, Wagenpfahl A, Dykonov V. Influence of charge carrier mobility on the performance of organic solar cells. Phys Stat Sol, 2008, 2: 175–177

    Google Scholar 

  47. Deibel C, Wagenpfahl A, Dyakonov V. Origin of reduced polaron recombination in organic semiconductor devices. Phys Rev B, 2009, 80: 075203

    Article  ADS  Google Scholar 

  48. Kirchartz T, Pieters B E, Taretto K, et al. Mobility dependent efficiencies of organic bulk heterojunction solar cells: Surface recombination and charge transfer state distribution. Phys Rev B, 2009, 80: 035334

    Article  ADS  Google Scholar 

  49. Kirchartz T, Taretto K, Rau U. Efficiency limits of organic bulk heterojunction solar cells. J Phys Chem C, 2009, 113: 17958

    Article  Google Scholar 

  50. Williams J, Walker A B. Two-dimensional simulations of bulk heterojunction solar cell characteristics. Nanotechnology, 2008, 19: 424011

    Article  ADS  Google Scholar 

  51. Buxton G A, Clarke N. Predicting structure and property relations in polymeric photovoltaic devices. Phys Rev B, 2006, 74: 085207

    Article  ADS  Google Scholar 

  52. Buxton G A, Clarke N. Computer simulation of polymer solar cells. Modelling Simul Mater Sci Eng, 2007, 15: 13–26

    Article  ADS  Google Scholar 

  53. Martin C M, Burlakov V M, Assender H E, et al. A numerical model for explaining the role of the interface morphology in composite solar cells. J Appl Phys, 2007, 102: 104506

    Article  ADS  Google Scholar 

  54. Marsh R A, Groves C, Greenham N C. A microscopic model for the behavior of nanostructured organic photovoltaic devices. J Appl Phys, 2007, 101: 083509

    Article  ADS  Google Scholar 

  55. Offermans T, Meskers S C J, Janssen R A J. Monte-Carlo simulations of geminate electron-hole pair dissociation in a molecular heterojunction: A two-step dissociation mechanism. Chem Phys, 2005, 308: 125–133

    Article  ADS  Google Scholar 

  56. Peumans P, Forrest S R. Separation of geminate charge-pairs at donor-acceptor interfaces in disordered solids. Chem Phys Lett, 2004, 398: 27–31

    Article  ADS  Google Scholar 

  57. Watkins P K, Walker A B, Verschoor G L B. Dynamical Monte Carlo modelling of organic solar cells: The dependence of internal quantum efficiency on morphology. Nano Lett, 2005, 5: 1814–1818

    Article  ADS  Google Scholar 

  58. Yang S, Forrest S R. Photocurrent generation in nanostructured organic solar cells. ACS Nano, 2008, 2: 1022–1032

    Article  Google Scholar 

  59. Deibel C. Charge carrier dissociation and recombination in polymer solar cells. Phys Status Solidi A, 2009, 206: 2731–2736

    Article  Google Scholar 

  60. Deibel C, Strobel T, Dyakonov V. Origin of the efficient polaron-pair dissociation in polymer-fullerene blends. Phys Rev Lett, 2009, 103: 036402

    Article  ADS  Google Scholar 

  61. Maturová K, van Bavel S S, Wienk M M, et al. Morphology device model for organic bulk heterojunction solar cells. Nano Lett, 2009, 9: 3032–3037

    Article  ADS  Google Scholar 

  62. Gummel H K. A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans Electron Devices, ED-11, 1964: 455–465

    Article  Google Scholar 

  63. Monestier F, Simon J J, Torchio P, et al. Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend. Sol Energy Mater Sol Cells, 2007, 91: 405–410

    Article  Google Scholar 

  64. Hadipour A, de Boer B, Blom P W M. Organic tandem and multi-junction solar cells. Adv Funct Mater, 2008, 18: 169–181

    Article  Google Scholar 

  65. Persson N K, Inganäs O. Organic tandem solar cells-modelling and predictions. Sol Energy Mater Sol Cells, 2006, 90: 3491–3507

    Article  Google Scholar 

  66. Eerenstein W, Slooff L H, Veenstra S C, et al. Optical modeling as optimization tool for single and double junction polymer solar cells. Thin Solid Films, 2008, 516: 7188–7192

    Article  ADS  Google Scholar 

  67. Slooff L H, Veenstra S C, Kroon J M, et al. Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modelling. Appl Phys Lett, 2007, 90: 143506

    Article  ADS  Google Scholar 

  68. Koster L J A, Mihailetchi V D, Xie H, et al. Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells. Appl Phys Lett, 2005, 87: 203502

    Article  ADS  Google Scholar 

  69. Koster L J A, Mihailetchi V D, Ramaker R, et al. Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Appl Phys Lett, 2005, 86: 123509

    Article  ADS  Google Scholar 

  70. Koster L J A, Mihailetchi V D, Blom P W M. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett, 2006, 88: 093511

    Article  ADS  Google Scholar 

  71. Shorckley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32: 510–519

    Article  ADS  Google Scholar 

  72. Bisquert J, Belmonte G G, Munar A, et al. Band unpinning and photovoltaic model for P3HT-PCBM organic bulk heterojunctions under illumination. Chem Phys Lett, 2008, 465: 57–62

    Article  ADS  Google Scholar 

  73. Haerter J O, Chasteen S V, Carter S A, et al. Numerical simulations of layered and blended organic photoboltaic cells. Appl Phys Lett, 2005, 86: 164101

    Article  ADS  Google Scholar 

  74. Mandoc M M, Koster L J A, Blom P W M. Optimum charge carrier mobility in organic solar cells. Appl Phys Lett, 2007, 90: 133504

    Article  ADS  Google Scholar 

  75. Chen L M, Hong Z, Li G, et al. Recent progress in polymer solar cells: Manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells. Adv Mater, 2009, 21: 1434–1449

    Article  Google Scholar 

  76. Koppe M, Scharber M, Brabec C, et al. Polyterthiophenes as donors for polymer solar cells. Funct Mater, 2007, 17: 1371–1376

    Article  Google Scholar 

  77. Ma W, Gopinathan A, Heeger A J. Nanostructure of the interpenetrating networks in Poly(3-hexylthiophene)/fullerene bulk heterojunction materials: Implications for charge transport. Adv Mater, 2007, 19: 3656–3659

    Article  Google Scholar 

  78. Mihailetchi V D, Koster L J A, Hummelen J C, et al. Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys Rev Lett, 2004, 93: 216601

    Article  ADS  Google Scholar 

  79. Halls J J M, Walsh C A, Greenham N C, et al. Efficient photodiodes from interpenetrating polymer networks. Nature, 1995, 376: 498–499

    Article  ADS  Google Scholar 

  80. Gommans H H P, Kemerink M, Kramer J M, et al. Field and temperature dependence of the photocurrent in polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett, 2005, 87: 122104

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhiQiang Gao or Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Mi, B., Gao, Z. et al. Recent progress in the numerical modeling for organic thin film solar cells. Sci. China Phys. Mech. Astron. 54, 375–387 (2011). https://doi.org/10.1007/s11433-011-4248-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4248-6

Keywords

Navigation