Skip to main content
Log in

A 5th order monotonicity-preserving upwind compact difference scheme

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Based on an upwind compact difference scheme and the idea of monotonicity-preserving, a 5th order monotonicity-preserving upwind compact difference scheme (m-UCD5) is proposed. The new difference scheme not only retains the advantage of good resolution of high wave number but also avoids the Gibbs phenomenon of the original upwind compact difference scheme. Compared with the classical 5th order WENO difference scheme, the new difference scheme is simpler and small in diffusion and computation load. By employing the component-wise and characteristic-wise methods, two forms of the new difference scheme are proposed to solve the N-S/Euler equation. Through the Sod problem, the Shu-Osher problem and the two-dimensional Double Mach Reflection problem, numerical solutions have demonstrated this new scheme does have a good resolution of high wave number and a robust ability of capturing shock waves, leading to a conclusion that the new difference scheme may be used to simulate complex flows containing shock waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harten A. High resolution schemes for hyperbolic conservation laws. J Comput Phys, 1983, 59: 357–393

    Article  MathSciNet  ADS  Google Scholar 

  2. Toro E. Riemann solvers and numerical methods for fluid dynamics. Berlin: Springer, 1997

    MATH  Google Scholar 

  3. Sweby P K. High resolution schemes using flux limiters for Hyperbolic conservation laws. SIAM J Numer Anal, 1984, 21: 995–1011

    Article  MathSciNet  MATH  Google Scholar 

  4. Van Leer B. Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method. J Comput Phys, 1979, 32: 101–136

    Article  ADS  Google Scholar 

  5. Zhang H X. Non-oscillatory and non-free-parameter dissipation difference scheme (in Chinese). Acta Aerodyn Sin, 1988, 6: 143–165

    Google Scholar 

  6. Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatory shock-capturing schemes III. J Comput Phys, 1987, 71: 231–303

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Serna S, Marquina A. Power ENO methods: A fifth-order accurate weighted power ENO method. J Comput Phys, 2004, 194: 632–658

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes. J Comput Phys, 1996, 126: 202–228

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Shu C W. TVB uniformly high-order schemes for conservation laws. Math Comput, 1987, 49: 105–121

    Article  MATH  Google Scholar 

  10. Suresh A, Huynh H T. Accurate monotonicity-preserving schemes with Runge-Kutta time stepping. J Comput Phys, 1997, 136: 83–99

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Lele S K. Compact finite difference schemes with spectral-like resolution. J Comput Phys, 1992, 103: 16–42

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Fu D X, Ma Y W. High resolution schemes, Computational Fluid Dynamics Review. Hafez M, Oshima K, Eds. New York: John Willey & Sons, 1995. 234–250

    Google Scholar 

  13. Halt D W, Agarwal R K. Compact higher order characteristic-based Euler solver for unstructured grids. AIAA J, 1992, 30: 1993–1999

    Article  ADS  MATH  Google Scholar 

  14. Cockburn B, Shu C W. Nonlinearly stable compact schemes for shock calculations. SIAM J Numer Anal, 1994, 31: 607–627

    Article  MathSciNet  MATH  Google Scholar 

  15. Ravichandran K S. High order KFVS algorithms using compact upwind difference operators. J Comput Phys, 1997, 130: 161–173

    Article  ADS  MATH  Google Scholar 

  16. Adams N A, Shariff K. A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J Comput Phys, 1996, 127: 27–51

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J Comput Phys, 2002, 178: 81–117

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Ren Y X, Liu M E, Zhang H X. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J Comput Phys, 2003, 192: 365–386

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Deng X, Zhang H. Developing high-order weighted compact nonlinear schemes. J Comput Phys, 2000, 165: 22–44

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Ma Y W, Fu D X. Fourth order accurate compact scheme with group velocity control (GVC). Sci China Ser A-Math Phys Astron, 2001, 44: 1197–1204

    Article  ADS  Google Scholar 

  21. Shu C W, Osher S. Efficient implementation of essentially nonoscillatory schemes. J Comput Phys, 1989, 83: 32–78

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Fu D X, Ma Y W. A high order accurate difference scheme for complex flow fields. J Comput Phys, 1997, 134: 1–15

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Fu D X, Ma Y W. Computational Fluid Dynamics (in Chinese). Beijing: Higher Education Press, 2002

    Google Scholar 

  24. Daru V, Tenaud C. High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations. J Comput Phys, 2004 193: 563–594

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Waterson N P, Deconinck H. Design principles for bounded higher-order convection schemes-a unified approach. J Comput Phys, 2007, 224: 182–207

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Balsara D S, Shu C W. Monotonicity preserving weighted essentially nonoscillatory schemes with increasingly high order of accuracy. J Comput Phys, 2000, 160: 405–452

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Woodward P, Colella P. Numerical simulations of two-dimensional fluid flow with strong shocks. J Comput Phys, 1984, 54: 115–173

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinLiang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Z., Li, X., Fu, D. et al. A 5th order monotonicity-preserving upwind compact difference scheme. Sci. China Phys. Mech. Astron. 54, 511–522 (2011). https://doi.org/10.1007/s11433-010-4220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4220-x

Keywords

Navigation