Skip to main content
Log in

Optimization of the imaginary time step evolution for the Dirac equation

Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Cite this article


Taking the single neutron levels of 12C in the Fermi sea as examples, the optimization of the imaginary time step (ITS) evolution with the box size and mesh size for the Dirac equation is investigated. For the weakly bound states, in order to reproduce the exact single-particle energies and wave functions, a relatively large box size is required. As long as the exact results can be reproduced, the ITS evolution with a smaller box size converges faster, while for both the weakly and deeply bound states, the ITS evolutions are less sensitive to the mesh size. Moreover, one can find a parabola relationship between the mesh size and the corresponding critical time step, i.e., the largest time step to guarantee the convergence, which suggests that the ITS evolution with a larger mesh size allows larger critical time step, and thus can converge faster to the exact result. These conclusions are very helpful for optimizing the evolution procedure in the future self-consistent calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. Tanihata I, et al. Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys Rev Lett, 1985, 55: 2676–2679

    Article  ADS  Google Scholar 

  2. Bertulani C A, Hussein M S, Münzengerg G. Physics of Radioactive Beams. New York: Nova Science Publishers, Inc, 2001

    Google Scholar 

  3. Jonson B. Light dripline nuclei. Phys Rep, 2004, 389: 1–59

    Article  ADS  Google Scholar 

  4. Jensen A S, Riisager K, Fedorov D V, et al. Structure and reactions of quantum halos. Rev Mod Phys, 2004, 76: 215–261

    Article  ADS  Google Scholar 

  5. Xu H S, Tu X L, Yuan Y J, et al. First mass measurement of short-lived nuclides at HIRFL-CSR. Chin Sci Bull, 2009, 54: 4749–4752

    Article  Google Scholar 

  6. Serot B D, Walecka J D. The relativistic nuclear many-body problem. Adv Nucl Phys, 1986, 16: 1–327

    Google Scholar 

  7. Ring P. Relativistic mean field theory in finite nuclei. Prog Part Nucl Phys, 1996, 37: 193–263

    Article  ADS  Google Scholar 

  8. Vretenar D, Afanasjev A V, Lalazissis G A, et al. Relativistic Hartree-Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure. Phys Rep, 2005, 40: 101–259

    Article  ADS  Google Scholar 

  9. Meng J, Toki H, Zhou S G, et al. Relativisitc continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog Part Nucl Phys, 2006, 57: 470–563

    Article  ADS  Google Scholar 

  10. Li J, Zhang Y, Yao J M, et al. Magnetic moments of 33Mg in the timeodd relativistic mean field approach. Sci China Ser G-PhysMech Astron, 2009, 52: 1586–1592

    Article  MathSciNet  ADS  Google Scholar 

  11. Meng J, Ring P. Relativistic Hartree-Bogoliubov description of the neutron halo in 11Li. Rev Lett, 1996, 77: 3963–3966

    Article  ADS  Google Scholar 

  12. Meng J, Tanihata I, Yamaji S. The proton and neutron distributions in Na isotopes: The development of halo and shell structure. Phys Lett B, 1998, 419: 1–6

    Article  ADS  Google Scholar 

  13. Meng J, Ring P. Giant halo at the neutron drip line. Phys Rev Lett, 1998, 80: 460–463

    Article  ADS  Google Scholar 

  14. Price C E, Walker G E. Self-consistent Hartree description of deformed nuclei in a relativistic quantum field theory. Phys Rev C, 1987, 36: 354–364

    Article  ADS  Google Scholar 

  15. Meng J, Lü H F, Zhang S Q, et al. Giant, hyperon, and deformed halos near the particle drip line. Nucl Phys A, 2003, 722: 366c–371c

    Article  ADS  Google Scholar 

  16. Zhou S G, Meng J, Ring P. Spherical relativistic Hartree theory in a Woods-Saxon basis. Phys Rev C, 2003, 68: 034323

    Article  ADS  Google Scholar 

  17. Zhou S G, Meng J, Ring P. Deformed relativistic Hartree-Bogoliubov model for exotic nuclei. In: Physics of Unstable Nuclei. Singapore: World Scientific Press, 2008. 402–408

  18. Zhou S G, Meng J, Ring P, et al. Neutron halo in deformed nuclei. Phys Rev C, 2010, 82: 011301 (R)

    ADS  Google Scholar 

  19. Davies K T R, Flocard H, Krieger S, et al. Application of the imaginary time step method to the solution of the static Hartree-Fock problem. Nucl Phys A, 1980, 342: 111–123

    Article  MathSciNet  ADS  Google Scholar 

  20. Zhang Y, Liang H Z, Meng J. Avoid the Tsunami of the Dirac sea in the imaginary time step method. Int J Mod Phys E, 2010, 19: 55–62

    Article  ADS  Google Scholar 

  21. Zhang Y, Liang H Z, Meng J. Solving the dirac equation with nonlocal potential by imaginary time step method. Chin Phys Lett, 2009, 26: 092401

    Article  ADS  Google Scholar 

  22. Bonche P, Flocard H, Heenen P H. Solution of the Skyrme HF + BCS equation on a 3D mesh. Com Phys Com, 2005, 171: 49–62

    Article  ADS  Google Scholar 

  23. Li F Q, Zhang Y, Meng J. Convergence for imaginary time step evolution in the Fermi and Dirac seas. Sci China Ser G-Phys Mech Astron, 2010, 53: 327–330

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jie Meng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, F., Zhang, Y., Liang, H. et al. Optimization of the imaginary time step evolution for the Dirac equation. Sci. China Phys. Mech. Astron. 54, 231–235 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: