Skip to main content
Log in

A super-resolution algorithm for synthetic aperture radar based on modified spatially variant apodization

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The existing spatially variant apodizations (SVAs) either cannot depress the sidelobes effectively or reduce the energy of the mainlobe. To improve this, a modified SVA (MSVA) is put forward in this paper, which expands the traditional filter from 3-taps to 5-taps and sets relevant parameters according to different sampling rates to get the excellent result that satisfies constrained optimization theory. A modified super-SVA is also presented, which compares the result after the iteration with the original signal and makes the one whose amplitude is smaller as the initial value of the next iteration. This method can eliminate the sidelobes produced by the intermediate operation, so that the following bandwidth extrapolation is more available. Super-MSVA is presented based on the modified SVA and modified super-SVA, which is suitable for any Nyquist sampling rate, can extrapolate the signal bandwidth many times through iteration with a commensurate improvement in resolution, as demonstrated by the result of the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cumming I G, Wong F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Norwood: Artech House, 2005. 21–112

    Google Scholar 

  2. Nuttall A H. Some windows with very good sidelobe behavior. IEEE Trans Acoust Speech Signal Process, 1981, 29(1):84–91

    Article  ADS  Google Scholar 

  3. Zhang X Y, Su W M, Shi J, et al. Application of apodization filtering sidelobe suppression technique to synthetic aperture radar. J Electron Inf Technol, 2008, 30(4):902–905

    Article  Google Scholar 

  4. Kwan H K, Lee C K. A neural network approach to pulse radar detection. IEEE Trans Aerosp Electron Syst, 1993, 29(1):9–21

    Article  ADS  Google Scholar 

  5. Stankwitz H C, Dallaire R J, Fienup J R. Spatially variant apodization for sidelobe control in SAR imagery. In: Record of the 1994 IEEE National Radar Conference. Atlanta: IEEE, 1994. 132–137

    Chapter  Google Scholar 

  6. Xu X J, Narayanan R M. SAR image enhancement using noninteger nyquist SVA technique. In: IEEE Antennas and Propagation Society International Symposium. San Antonio: IEEE, 2002, 4:298–301

    Google Scholar 

  7. Stankwitz H C, Kosek M R. Sparse aperture fill for SAR using super-SVA. In: Proceedings of 1996 IEEE Radar Conference. Ann Arbor: IEEE, 1996. 70–75

    Chapter  Google Scholar 

  8. Castillo-Rubio C, Romano S L, Burgos-Garcia M. Spatially variant apodization for squinted synthetic aperture radar images. IEEE Trans Image Process, 2007, 16(8):2023–2027

    Article  MathSciNet  ADS  Google Scholar 

  9. Zhai W S, Zhang Y H. Apply spatially variant apodization to SAR/INSAR image processing. In: 1st Asian and Pacific Conference on Synthetic Aperture Radar. Huangshan: IEEE, 2007. 54–57

    Chapter  Google Scholar 

  10. Xu X J, Narayanan R M. Enhanced resolution in SAR/ISAR imaging ssing iterative sidelobe apodization. IEEE Trans Image Process, 2005, 14(4):537–547

    Article  MathSciNet  ADS  Google Scholar 

  11. Fischer J, Pupeza I, Scheiber R. Sidelobe suppression using the SVA method for SAR images and sounding radars. In: EUSAR 2006. Dresden: vde-verlag.de, 2006

    Google Scholar 

  12. Stankwitz H C, Dallaire R J, Fienup J R. Nonlinear apodization for sidelobe control in SAR imagery. IEEE Trans Aerosp Electron Syst, 1995, 31(1):267–279

    Article  ADS  Google Scholar 

  13. Smith B H. Generalization of spatially variant apodization to noninteger nyquist sampling rates. IEEE Trans Image Process, 2000, 9(6):1088–1093

    Article  ADS  Google Scholar 

  14. Castillo-Rubio C, Romano S L, Burgos-Garcia M. Robust SVA method for every sampling rate condition. IEEE Trans Aerosp Electron Syst, 2007, 43(2):571–580

    Article  ADS  Google Scholar 

  15. Jain A K. Fundamentals of Digital Image Processing. Upper Saddle River: Prentice Hall, 1989. 233–266

    MATH  Google Scholar 

  16. Borison S L, Bowling S B, Cuomo K M. Super-resolution methods for wideband radar. Lincoln Lab J, 1992, 5(3):441–461

    Google Scholar 

  17. Stankwitz H C, Taylor S P. Super-resolution for SAR/ISAR RCS measurement using spatially variant apodization (super-SVA). In: Antenna Measurement Techniques Association 17th Annual Meeting & Symposium. Williamsburg: AMTA, 1995. 251–256

    Google Scholar 

  18. Hu L J, Ding X D, Sun X J. Mathematical Experiment: Using MATLAB. Shanghai: Shanghai Scientific & Technical Publishers, 2001. 131–156

    Google Scholar 

  19. Jiang Q Y, Xing W X, Xie J X, et al. Experiments in Advanced Mathematics. Beijing: Tsinghua University Press, 2005. 137–193

    Google Scholar 

  20. Berizzi F, Corsini G. Autofocusing of inverse synthetic aperture radar images using contrast optimization. IEEE Trans Aerosp Electron Syst, 1996, 32(3): 1185–1191

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, C., Wang, Y., Xu, X. et al. A super-resolution algorithm for synthetic aperture radar based on modified spatially variant apodization. Sci. China Phys. Mech. Astron. 54, 355–364 (2011). https://doi.org/10.1007/s11433-010-4186-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4186-8

Keywords

Navigation