Skip to main content
Log in

Microscopic phase field study of the antisite defect of Ni3Al in binary Ni-Al alloys

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The temporal evolution feature of a microscopic phase field model is utilized to study the antisite defects of L12-Ni3Al; this is quite different from other physicist’ interests. There are mainly two points in brief. Firstly, antisite defects NiAl and AlNi, which are caused by the deviation from the stoichiometric Ni3Al, coexist in the Ni3Al phase. The surplus Ni atom in the Ni-rich side is prone to substitute Al thus producing the antisite defect NiAl that maintains the stability of the L12 structure. In other case, the surplus Al atom in the Al-rich side is accommodated by a Ni sublattice consequently giving rise to antisite defect AlNi. The calculated equilibrium occupancy probability of NiAl is much higher than that of AlNi. This point is generally in line with other theoretical and experimental works. Additionally, both NiAl and AlNi have a strong negative correlation to time step during the disorder-order transformation. Since the initial value of NiAl and AlNi on each site of the matrix is right at the concentration that we set, we can observe the decrease process of NiAl and AlNi from the initial disordered high anti-structure state to their respective equilibrium state, i.e. to the result of the ordering process further coarsening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruban A V, Skriver H L. Calculated site substitution in ternary γ‖IH-Ni3Al: Temperature and composition effects. Phys Rev B, 1997, 55: 856–874

    Article  ADS  Google Scholar 

  2. Oramus P, Massobrio C, Kozłowski M, et al. Ordering kinetics in Ni3Al by molecular dynamics. Comput Mater Sci, 2003, 27: 86–190

    Article  Google Scholar 

  3. Peng P, Soh A K, Yang R, et al. First-principles study of alloying effect of Re on properties of Ni/Ni3Al interface. Comput Mater Sci, 2006, 38: 354–361

    Article  Google Scholar 

  4. Mekhrabov A O, Akdeniz M V, Arer M M. Atomic ordering characteristics of Ni3Al intermetallics with substitutional ternary additions. Acta Mater, 1997, 45: 1077–1083

    Article  Google Scholar 

  5. Gao F, Wang T M, Calder A F, et al. Defect production and atomic mixing by displacement cascades in Ni3Al. Sci China Ser E-Technol Sci, 1997, 40: 553–560

    Article  Google Scholar 

  6. Foiles S M, Daw M. S. Application of the embedded atom method to Ni3Al. J Mater Res, 1987, 2: 5–15

    Article  ADS  Google Scholar 

  7. Mishin Y. Atomistic modeling of the γ and γ′ phases of the Ni-Al alloys. Acta Mater, 2004, 52: 1451–1467

    Article  Google Scholar 

  8. Fu C L, Painter G S. Point defects and the binding energies of boron near defect sites in Ni3Al: A first-principles investigation. Acta Mater, 1997, 45: 481–488

    Article  Google Scholar 

  9. Schweiger H, Semenova O, Wolf W, et al. Energetics of point defect formation in Ni3Al. Scr Mater, 2002, 46: 37–41

    Article  Google Scholar 

  10. Badura-Gergen K, Schaefer H E. Thermal formation of atomic vacancies in Ni3Al. Phys Rev B, 1997, 56: 3032–3037

    Article  ADS  Google Scholar 

  11. Würschum R, Badura-Gergen K, Kümmerle E A, et al. Characterization of radiation-induced lattice vacancies in intermetallic compounds by means of positron-lifetime studies. Phys Rev B, 1996, 54: 849–856

    Article  ADS  Google Scholar 

  12. Nic J P, Mikkola D E. Site occupancy in ternary L12 ordered alloys as determined by diffraction: Observations on (Al,Cr)3Ti alloys. Intermetallics, 1999, 7: 39–47

    Article  Google Scholar 

  13. Ikeda T, Almazouzi A, Numakura H, et al. Single-phase interdiffusion in Ni3Al. Acta Mater, 1998, 46: 5369–5376

    Article  Google Scholar 

  14. Krachler R, Semenova O P, Ipser H A. statistical-thermodynamic model for intermetallic phases with L12-structure and its application to the compound Ni3Al. Phys Status Solidi B-Basic Solid State Phys, 1999, 216: 943–954

    Article  ADS  Google Scholar 

  15. Xie Z Y, Diana F. Atomistic structure and lattice effects of vacancies in Ni-Al intermetallics. J Mater Res, 1994, 9: 875–883

    Article  ADS  Google Scholar 

  16. Wang Y Z, Li J. Phase field modeling of defects and deformation. Acta Mater, 2010, 58: 1212–1235

    Article  Google Scholar 

  17. Haataja M, Muller J, Rutenberg A D, et al. Dislocations and morphological instabilities: Continuum modeling of misfitting heteroepitaxial films. Phys Rev B, 2002, 65: 165414

    Article  ADS  Google Scholar 

  18. Shen C, Wang Y. Phase field model of dislocation networks. Acta Mater, 2003, 51: 2595–2610

    Article  Google Scholar 

  19. Shen C, Wang Y. Incorporation of γ-surface to phase field model of dislocations: Simulating dislocation dissociation in fcc crystals. Acta Mater, 2004, 52: 683–691

    Article  Google Scholar 

  20. Karma A, Lobkovsky A E. Unsteady crack motion and branching in a phase-field model of brittle fracture. Phys Rev Lett, 2004, 92: 245510

    Article  ADS  Google Scholar 

  21. Henry H, Levine H. Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett, 2004, 93:105504

    Article  ADS  Google Scholar 

  22. Hakim V, Karma A. Crack path prediction in anisotropic brittle materials. Phys Rev Lett, 2005, 95: 235501

    Article  ADS  Google Scholar 

  23. Spatschek R, Muller-Krumbhaar H, Brener E, et al. Phase field modeling of fracture and stress-induced phase transitions. Phys Rev Lett, 2007, 75: 066111

    Google Scholar 

  24. Mahadevan M, Bradley R M. Simulations and theory of electromigration-induced slit formation in unpassivated single-crystal metal lines. Phys Rev B, 1999, 59: 11037

    Article  ADS  Google Scholar 

  25. Bhate D N, Kumar A, Bower A F. Diffuse interface model for electromigration and stress voiding. J Appl Phys, 2000, 87: 1712–1721

    Article  ADS  Google Scholar 

  26. Yu H C, Lu W. Dynamics of the self-assembly of nanovoids and nanobubbles in solids. Acta Mater, 2005, 53: 1799–1807

    Article  MathSciNet  Google Scholar 

  27. Lu G, Zhang Q, Kioussis N, et al. Hydrogen-enhanced local plasticity in aluminum: An ab initio study. Phys Rev Lett, 2001, 87: 095501

    Article  ADS  Google Scholar 

  28. Hennig R G, Trinkle D R, Bouchet J, et al. Impurities block the α to w martensitic transformation in titanium. Nat Mater, 2005, 4: 129–133

    Article  ADS  Google Scholar 

  29. Johnson R A, Brown J R. Vacancies and antisite defects in ordered alloys. J Mater Res, 1992, 7: 3213–3218

    Article  ADS  Google Scholar 

  30. Mishin Y. Embedded-atom potential for B2-NiAl. Phys Rev B, 2002, 65: 224114

    Article  ADS  Google Scholar 

  31. Song Y, Guo Z X, Yang R, et al. First principles study of site substitution of ternary elements in NiAl. Acta Mater, 2001, 49: 1647–1654

    Article  Google Scholar 

  32. Liu J B, Johnson D D, Smirnov A V. Predicting yield-stress anomalies in L12 alloys: Ni3Ge-Fe3Ge pseudo-binaries. Acta Mater, 2005, 53: 3601–3612

    Article  Google Scholar 

  33. Meyer B, Fähnle M. Atomic defects in the ordered compound B2-NiAl: A combination of ab initio electron theory and statistical mechanics. Phys Rev B, 1999, 59: 6072–6082

    Article  ADS  Google Scholar 

  34. Gururajan M P, Abinandanan T A. Mean field theory of point defects in β-NiAl. Intermetallics, 2000, 8: 759–767

    Article  Google Scholar 

  35. Fähnle M, Mayer J, Meyer B. Theory of atomic defects and diffusion in ordered compounds and application to B2-FeAl. Intermetallics, 1999, 7: 315–323

    Article  Google Scholar 

  36. Khachaturyan A G. Theory of Structural Transformations in Solids. New York: Willey, 1983. 19

    Google Scholar 

  37. Chen L Q. Phase-field models for microstructure evolution. Annu Rev Mater Res, 2002, 32: 113–140

    Article  Google Scholar 

  38. Poduri R, Chen L Q. Computer simulation of morphological evolution and coarsening kinetics of δ′(Al3Li) precipitates in Al-Li alloys. Acta Mater, 1998, 46: 3915–3928

    Article  Google Scholar 

  39. Poduri R, Chen L Q. Computer simulation of atomic ordering and Compositional clustering in the pseudobinary Ni3Al-Ni3V alloys. Acta Mater, 1998, 46: 1719–1729

    Article  Google Scholar 

  40. Li Y S, Chen Z, Lu Y L, et al. Coarsening kinetics intermetallic precipitates in Ni75AlxV25−x alloys. J Mater Res, 2007, 22: 61–67

    Article  ADS  Google Scholar 

  41. Hu Q M, Yang R, Hao Y L, et al. Concentrated point defects in and order-disorder transition temperature of intermetallic compounds. Phys Rev Lett, 2004, 92: 185505

    Article  ADS  Google Scholar 

  42. Chen L Q, Simmons J A. Microscopic master equation approach to diffusional transformations in inhomogeneous systems—single site approximation and direct exchange mechanism. Acta Metal Mater, 1994, 42: 2943–2954

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Chen, Z., Lu, Y. et al. Microscopic phase field study of the antisite defect of Ni3Al in binary Ni-Al alloys. Sci. China Phys. Mech. Astron. 53, 2047–2053 (2010). https://doi.org/10.1007/s11433-010-4121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4121-z

Keywords

Navigation