Skip to main content
Log in

Simpler criterion and flexibility of operation complexity for perfectly teleporting arbitrary n-qubit state with 2n-qubit pure state

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A criterion for whether a pure-state quantum channel consisting of 2n qubits averagely distributed between two nodes can be used for perfectly teleporting an arbitrary n-qubit state via Bell-state measurements is educed. Specifically, a matrix is composed of the coefficients of the known channel state and whether the matrix is unitary decides the criterion. As the criterion is apparently different from the usual standard entanglement criterion (USEC), its applicability is enlarged and verified by other measuring bases. Thorough analyses have further simplified the resultant criterion, so that a much simpler criterion than the USEC is conclusively obtained. Moreover, the flexibility of operation complexity between the non-unitary measurements and the unitary reconstructions is explicitly exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Zubairy M S. Quantum teleportation of a field state. Phys Rev A, 1998, 58: 4368–4372

    Article  MathSciNet  ADS  Google Scholar 

  3. Stenholm S, Bardroff P J. Teleportation of N-dimensional states. Phys Rev A, 1998, 58: 4373–4376

    Article  MathSciNet  ADS  Google Scholar 

  4. Li W L, Li C F, Guo G C. Probabilistic teleportation and entanglement matching. Phys Rev A, 2000, 61: 034301

    Article  MathSciNet  ADS  Google Scholar 

  5. Shi B S, Jiang Y K, Guo G C. Probabilistic teleportation of two-particle entangled state. Phys Lett A, 2000, 268: 161–164

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Zeng B, Liu X S, Li Y S, et al. High-dimensional multi-particle cat-like state teleportation. Commun Theor Phys, 2002, 38: 537–540

    MathSciNet  Google Scholar 

  7. Lee J h, Min H G, Oh S D. Multipartite entanglement for entanglement teleportation. Phys Rev A. 2002, 66: 052318

    Article  ADS  Google Scholar 

  8. Agrawal P, Pati A K. Probabilistic quantum teleportation. Phys Lett A, 2002, 305: 12–17

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Yan F L, Wang D. Probabilistic and controlled teleportation of unknown quantum states. Phys Lett A, 2003, 316: 297–303

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Roa L, Delgado A, Fuentes-Guridi I. Optimal conclusive teleportation of quantum states. Phys Rev A, 2003, 68: 022310

    Article  ADS  Google Scholar 

  11. Rigolin G. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys Rev A, 2005, 71: 032303

    Article  ADS  Google Scholar 

  12. Deng F G. Comment on “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement”. Phys Rev A, 2005, 72: 036301

    Article  ADS  Google Scholar 

  13. Deng F G, Li C Y, Li Y S, et al. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys Rev A, 2005, 72: 022338

    Article  ADS  Google Scholar 

  14. Zhang Z J, Man Z X. Many-agent controlled teleportation of multi-qubit quantum information. Phys Lett A, 2005, 341: 55–59

    Article  MATH  ADS  Google Scholar 

  15. Zhang Z J. Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys Lett A, 2006, 351: 55–58

    Article  ADS  Google Scholar 

  16. Wang M Y, Yan F L. Teleporting a quantum state from a subset of the whole Hilbert space. Phys Lett A, 2006, 355: 94–97

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Yan F L, Ding H W. Probabilistic teleportation of an unknown two-particle state with a four-particle pure entangled state and positive operator valued measure. Chin Phys Lett, 2006, 23: 17–20

    Article  ADS  Google Scholar 

  18. Yeo Y, Chua W K. Teleportation and dense coding with genuine multipartite entanglement. Phys Rev Lett, 2006, 96: 060502

    Article  ADS  Google Scholar 

  19. Yeo Y. Teleportation with a mixed state of four qubits and the generalized singlet fraction. Phys Rev A, 2006, 74: 052305

    Article  MathSciNet  ADS  Google Scholar 

  20. Gordon G, Rigolin G. Generalized teleportation protocol. Phys Rev A, 2006, 73: 042309

    Article  ADS  Google Scholar 

  21. Pati A K, Agrawal P. Probabilistic teleportation of a qudit. Phys Lett A, 2007, 371: 185–189

    Article  MathSciNet  ADS  Google Scholar 

  22. Wang X W, Shan Y G, Xia L X, et al. Dense coding and teleportation with one-dimensional cluster states. Phys Lett A, 2007, 364: 7–11

    Article  ADS  Google Scholar 

  23. Zhou P, Li X H, Deng F G, et al. Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel. J Phys A, 2007, 40: 13121–13130

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Li X H, Deng F G, Zhou H Y. Controlled teleportation of an arbitrary multi-qudit state in a general form with d-dimensional Greenberger-Horne-Zeilinger states. Chin Phys Lett, 2007, 24: 1151–1153

    Article  ADS  Google Scholar 

  25. Zhang Z J, Liu Y M, Wang D. Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys Lett A, 2007, 372: 28–32

    Article  ADS  Google Scholar 

  26. Zhang W, Liu Y M, Wang Z Y, et al. Preparation of multi-atom cluster state and teleportation of arbitrary two-atom state via thermal cavity Generalized multiparty quantum single-qutrit-state sharing. Opt Commun, 2008, 281: 4549–4552

    Article  ADS  Google Scholar 

  27. Zhang W, Liu Y M, Liu J, et al. Teleportation of arbitrary unknown twoatom state with cluster state via thermal cavity. Chin Phys B, 2008, 17: 3203–3208

    Article  ADS  Google Scholar 

  28. Zhang W, Liu YM, Wang Z Y, et al. Discriminating 16mutually orthogonal 4-atom cluster states via cavity QED in teleporting arbitrary unknown two-atom state with a 4-atom cluster state as quantum channel. Int J Mod Phys C, 2008, 19: 741–747

    Article  MATH  ADS  Google Scholar 

  29. Yuan H, Liu Y M, Zhang Z J. Comment on: “Dense coding and teleportation with one-dimensional cluster states” [Phys. Lett. A 364 (2007) 7]. Phys Lett A, 2008, 372: 5938–5940

    Article  ADS  Google Scholar 

  30. Gao T, Yan F L, Li Y C. Optimal controlled teleportation. Europhys Lett, 2008, 84: 50001

    Article  ADS  Google Scholar 

  31. Gao T, Yan F L, Li Y C. Optimal controlled teleportation via several kinds of three-qubit states. Sci China Ser G-Phys Mech Astron, 2008, 51: 1529–1556

    Article  ADS  Google Scholar 

  32. Wang M Y, Yan F L. Chain teleportation via partially entangled states. Eur Phys J D, 2009, 54: 111–114

    Article  MathSciNet  ADS  Google Scholar 

  33. Cheung C Y, Zhang Z J. Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys Rev A, 2009, 80: 022327

    Article  ADS  Google Scholar 

  34. Zha X W, Song H Y. Non-Bell-pair quantum channel for teleporting an arbitrary two-qubit state. Phys Lett A, 2007, 369: 377–379

    Article  MathSciNet  ADS  Google Scholar 

  35. Zha X W, Ren K F. General relation between the transformation operator and an invariant under stochastic local operations and classical communication in quantum teleportation. Phys Rev A, 2008, 77: 014306

    Article  ADS  Google Scholar 

  36. Shang-Guan L Y, Sun H X, Wen Q Y, et al. Necessary and sufficient conditions on n-qudit state for perfect teleportation of an arbitrary single qudit state. Opt Commun, 2009, 282: 4823–4826

    Article  ADS  Google Scholar 

  37. Zhang Z Y, Liu Y M, Zuo X Q, et al. Transformation operator and criterion for perfectly teleporting arbitrary three-qubit state with six-qubit channel and Bell-state measurement. Chin Phys Lett, 2009, 26: 120303

    Article  ADS  Google Scholar 

  38. Zuo X Q, Liu Y M, Zhang W, et al. Simpler criterion on W state for perfect quantum state splitting and quantum teleportation. Sci China Ser G-Phys Mech Astron, 2009, 52: 1906–1912

    Article  ADS  Google Scholar 

  39. Wang Y H, Song H S. Preparation of multi-atom specially entangled W-class state and splitting quantum information. Chin Sci Bull, 2009, 54: 2599–2605

    Article  Google Scholar 

  40. Xu FX, Chen W, Wang S, et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin Sci Bull, 2009, 54: 2991–2997

    Article  Google Scholar 

  41. Zhang X H, Yang Z Y, Xu P P. Teleporting N-qubit unknown atomic state by utilizing the V-type three-level atom. Sci China Ser G-Phys Mech Astron, 2009, 52: 1034–1038

    Article  ADS  Google Scholar 

  42. Tian D P, Tao Y J, Qin M. Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state. Sci China Ser G-Phys Mech Astron, 2008, 51: 1523–1528

    Article  ADS  Google Scholar 

  43. Li H Q, Xu S M, Xu X L, et al. The construction of the generalized continuously variable two-mode entangled state and its application. Sci China Ser G-Phys Mech Astron, 2009, 52: 1932–1937

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Zhang or ZhanJun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, X., Liu, Y., Zhang, Z. et al. Simpler criterion and flexibility of operation complexity for perfectly teleporting arbitrary n-qubit state with 2n-qubit pure state. Sci. China Phys. Mech. Astron. 53, 2069–2073 (2010). https://doi.org/10.1007/s11433-010-4111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4111-1

Keywords

Navigation