Science China Physics, Mechanics and Astronomy

, Volume 53, Issue 8, pp 1438–1444 | Cite as

Electrostatic levitation under the single-axis feedback control condition

  • Liang Hu
  • HaiPeng Wang
  • WenJun Xie
  • BingBo WeiEmail author
Research Paper


An electrostatic levitator with a single-axis feedback control system was developed on the basis of electric field analysis and optimum design for levitation electrodes. In order to realize the stable levitation of various types of materials such as metals, inorganic materials and polymers, we made both experimental and theoretical investigations to solve the four key problems of electric field optimization, sample position detecting, sample charging control and levitation voltage minimization. Under the capacitive induction charging condition, a sample with the size of 2.6–4.5 mm usually bears positive charges amounting to 10−9 Coulomb. Because the single-axis feedback control system responds quickly, it takes the levitated sample only 0.1 s from leaving the bottom electrode until attaining a stable levitation in the upright direction. The levitated sample displays satisfactory levitation stability in both the upright and the horizontal directions owing to the constraining force produced by spherical electrodes.


electrostatic levitation containerless processing feedback control space science 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Greaves G N, Wilding M C, Fearn S, et al. Detection of first-order liquid/liquid phase transitions in Yttrium Oxide-Aluminum oxide melts. Science, 2008, 322: 566–570CrossRefADSGoogle Scholar
  2. 2.
    Brandt E H. Levitation in physics. Science, 1989, 243(4889): 349–355CrossRefADSGoogle Scholar
  3. 3.
    Hu L, Lu X Y, Hou Z M. Progress in electrostatic levitation technology (in Chinese). Physics, 2007, 36(12): 944–950Google Scholar
  4. 4.
    Kelton K F, Lee G W, Gangopadhyay A K, et al. First X-Ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral order on the nucleation barrier. Phys Rev Lett, 2003, 90(19): 195504CrossRefADSGoogle Scholar
  5. 5.
    Millikan R. A new modification of the cloud method of determining the elementary electrical charge and the most probable value of that charge. Phil Mag, 1910, 19(110): 209–228Google Scholar
  6. 6.
    Wuerker R F, Shelton H, Langmuir R V. Electrodynamic containment of charged particles. J Appl Phys, 1959, 30(3): 342–349CrossRefADSGoogle Scholar
  7. 7.
    Wang T G, Trinh E, Rhim W K, et al. Containerless processing technologies at the Jet Propulsion Laboraory. Acta Astronautica, 1984, 11(3): 233–237CrossRefGoogle Scholar
  8. 8.
    Rhim W K, Chung S K, Barber D, et al. An electrostatic levitator for high-temperature containerless materials processing in 1-g. Rev Sci Instrum, 1993, 64(10): 2961–2970CrossRefADSGoogle Scholar
  9. 9.
    Meister T, Lohoefer G, Unbehauen H. Containless processing by electrostatic levitation. Acta Photonica Sinica, 1999, 28(Z2): 14–19Google Scholar
  10. 10.
    Sung Y S, Takeya H, Togano K. Containerless solidification of Si, Zr, Nb, and Mo by electrostatic levitation. Rev Sci Instrum, 2001, 72(12): 4419–4423CrossRefADSGoogle Scholar
  11. 11.
    Wall J J, Liu C T, Rhim W K, et al. Heterogeneous nucleation in a glass-forming alloy. Appl Phys Lett, 2008, 92(24): 244106CrossRefADSGoogle Scholar
  12. 12.
    Chung S K, Trinh E H. Containerless protein crystal growth in rotating levitated drops. J Crys Growth, 1998, 194(3): 384–397CrossRefADSGoogle Scholar
  13. 13.
    Mukherjee S, Zhou Z H, Johnson W L, et al. Thermophysical properties of Ni-Nb and Ni-Nb-Sn bulk metallic glass-forming melts by containerless electrostatic levitation processing. J Non-Cryst Solids, 2004, 337(1): 21–28CrossRefADSGoogle Scholar
  14. 14.
    Mukherjee S, Schroers J, Johnson W L, et al. Influence of kinetic and thermodynamic factors on the glass-forming ability of zirconium-based bulk amorphous alloys. Phys Rev Lett, 2005, 94(24): 245501CrossRefADSGoogle Scholar
  15. 15.
    Paradis P F, Ishikawa T, Yoda S. Experiments in materials science on the ground and in reduced gravity using electrostatic levitators. Adv Space Res, 2008, 41(12): 2118–2125CrossRefADSGoogle Scholar
  16. 16.
    Paradis P F, Ishikawa T, Yoda S. Electrostatic levitation research and development at JAXA: Past and present activities in thermophysics. Inter J Thermophys, 2005, 26(4): 1031–1049CrossRefGoogle Scholar
  17. 17.
    Ishikawa T, Paradis P F, Koike N, et al. Effects of the positioning force of electrostatic levitators on viscosity measurements. Rev Sci Instrum, 2009, 80(1): 013906CrossRefADSGoogle Scholar
  18. 18.
    Yan L, Liu G J. Control system of electrostatic suspension. Beijing: National Defense Industry Press, 2001Google Scholar
  19. 19.
    Han F T, Fu Z Z. Design of rebalance loop for an electrostatically suspended micromachined gyroscope (in Chinese). J Chin Inertial Tech, 2010, 18(1): 97–10Google Scholar
  20. 20.
    Wang X J, Zhang H J, Huang F. Optronic control system of electrostatic suspension with optronic feedback control (in Chinese). Acta Photonica Sin, 2002, 31(2): 187–190zbMATHGoogle Scholar
  21. 21.
    Félici N J. Forces et charges de petits objets en contact avec une électrode affectée d’un champ électrique (in Chinese). Rev Gén Elec, 1966, 75: 1145–1160Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Liang Hu
    • 1
  • HaiPeng Wang
    • 1
  • WenJun Xie
    • 1
  • BingBo Wei
    • 1
    Email author
  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations