Skip to main content
Log in

Perfect teleportation of an arbitrary three-qubit state with the highly entangled six-qubit genuine state

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The perfect teleportation of an arbitrary three-qubit state with the highly entangled six-qubit genuine state introduced by Borras et al. (J. Phys. A: Math. Theor. 40 (2007) 13407) is studied. Some appropriate measuring bases the sender can take and the corresponding unitary operations the receiver should execute in terms of the sender’s measurement outcome are explicitly given. The flexibility between the measurement difficulty and the reconstruction difficulty is shown. Moreover, discussions and comparisons between our scheme and the recent incomplete scheme (Choudhury et al, J. Phys. A: Math. Theor. 42 (2009) 115303) are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G, Cr peau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Zubairy M S. Quantum teleportation of a field state. Phys Rev A, 1998, 58: 4368–4372

    Article  MathSciNet  ADS  Google Scholar 

  3. Stenholm S, Bardroff P J. Teleportation of N-dimensional states. Phys Rev A, 1998, 58: 4373–4376

    Article  MathSciNet  ADS  Google Scholar 

  4. Lee J H, Min H G, Oh S D. Multipartite entanglement for entanglement teleportation. Phys Rev A, 2002, 66: 052318

    Article  ADS  Google Scholar 

  5. Zeng B, Liu X S, Li Y S, et al. High-dimensional multi-particle cat-like state teleportation. Commun Theor Phys, 2002, 38: 537–540

    MathSciNet  Google Scholar 

  6. Yan F L, Wang D. Probabilistic and controlled teleportation of unknown quantum states. Phys Lett A, 2003, 316: 297–303

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Roa L, Delgado A, Fuentes-Guridi I. Optimal conclusive teleportation of quantum states. Phys Rev A, 2003, 68: 022310

    Article  ADS  Google Scholar 

  8. Rigolin G. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys Rev A, 2005, 71: 032303

    Article  ADS  Google Scholar 

  9. Deng F G. Comment on “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement”. Phys Rev A, 2005, 72: 036301

    Article  ADS  Google Scholar 

  10. Deng F G, Li C Y, Li Y S, et al. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys Rev A, 2005, 72: 022338

    Article  ADS  Google Scholar 

  11. Wang M Y, Yan F L. Teleporting a quantum state from a subset of the whole Hilbert space. Phys Lett A, 2006, 355: 94–97

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Yan F L, Ding H W. Probabilistic teleportation of an unknown two-particle state with a four-particle pure entangled state and positive operator valued measure. Chin Phys Lett, 2006, 23: 17–20

    Article  ADS  Google Scholar 

  13. Zhang Z J, Man Z X. Many-agent controlled teleportation of multi-qubit quantum information. Phys Lett A, 2005, 341: 55–59

    Article  ADS  MATH  Google Scholar 

  14. Zhang Z J. Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys Lett A, 2006, 351: 55–58

    Article  ADS  Google Scholar 

  15. Yeo Y, Chua W K. Teleportation and dense coding with genuine multipartite entanglement. Phys Rev Lett, 2006, 96: 060502

    Article  ADS  Google Scholar 

  16. Yeo Y. Teleportation with a mixed state of four qubits and the generalized singlet fraction. Phys Rev A, 2006, 74: 052305

    Article  MathSciNet  ADS  Google Scholar 

  17. Wang X W, Shan Y G, Xia L X, et al. Dense coding and teleportation with one-dimensional cluster states. Phys Lett A, 2007, 364: 7–11

    Article  ADS  Google Scholar 

  18. Zhang Z J, Liu Y M, Wang D. Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys Lett A, 2007, 372: 28–32

    Article  ADS  Google Scholar 

  19. Zhang W, Liu Y M, Wang Z Y, et al. Preparation of multi-atom cluster state and teleportation of arbitrary two-atom state via thermal cavity generalized multiparty quantum single-qutrit-state sharing. Opt Commun, 2008, 281: 4549–4552

    Article  ADS  Google Scholar 

  20. Zhang W, Liu Y M, Liu J, et al. Teleportation of arbitrary unknown twoatom state with cluster state via thermal cavity. Chin Phys B, 2008, 17: 3203–3208

    Article  ADS  Google Scholar 

  21. Zhang W, Liu YM, Wang Z Y, et al. Discriminating 16 mutually orthogonal 4-atom cluster states via cavity QED in teleporting arbitrary unknown two-atom state with a 4-atom cluster state as quantum channel. Int J Mod Phys C, 2008, 19: 741–747

    Article  ADS  MATH  Google Scholar 

  22. Yuan H, Liu Y M, Zhang Z J. Comment on: “Dense coding and teleportation with one-dimensional cluster states” (Phys Lett A, 2007, 364: 7). Phys Lett A, 2008, 372: 5938–5940

    Article  ADS  Google Scholar 

  23. Gao T, Yan F L, Li Y C. Optimal controlled teleportation. Europhys Lett, 2008, 84: 50001

    Article  ADS  Google Scholar 

  24. Gao T, Yan F L, Li Y C. Optimal controlled teleportation via several kinds of three-qubit states. Sci China Ser G-Phys Mech Astron, 2008, 51: 1529–1556

    Article  ADS  Google Scholar 

  25. Tian D P, Tao Y J, Qin M. Teleportation of an arbitrary two-qudit state based on the non-maximally four-qubit cluster state. Sci China Ser GPhys Mech Astron, 2008, 51: 1523–1528

    Article  ADS  Google Scholar 

  26. Wang M Y, Yan F L. Chain teleportation via partially entangled states. Eur Phys J D, 2009, 54: 111–114

    Article  MathSciNet  ADS  Google Scholar 

  27. Cheung C Y, Zhang Z J. Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys Rev A, 2009, 80: 022327

    Article  ADS  Google Scholar 

  28. Zhang Z Y, Liu Y M, Zuo X Q, et al. Transformation operator and criterion for perfectly teleporting arbitrary three-qubit state with six-qubit channel and Bell-state measurement. Chin Phys Lett, 2009, 26: 120303

    Article  ADS  Google Scholar 

  29. Wang Y H, Song H S. Preparation of multi-atom specially entangled Wclass state and splitting quantum information. Chin Sci Bull, 2009, 54: 2599–2605

    Article  Google Scholar 

  30. Li H Q, Xu S M, Xu X L, et al. The construction of the generalized continuously variable two-mode entangled state and its application. Sci China Ser G-Phys Mech Astron, 2009, 52: 1932–1937

    Article  ADS  Google Scholar 

  31. Zuo X Q, Liu Y M, Zhang W, et al. Simpler criterion on W state for perfect quantum state splitting and quantum teleportation. Sci China Ser G-Phys Mech Astron, 2009, 52: 1906–1912

    Article  ADS  Google Scholar 

  32. Zhang X H, Yang Z Y, Xu P P. Teleporting N-qubit unknown atomic state by utilizing the V-type three-level atom. Sci China Ser G-Phys Mech Astron, 2009, 52: 1034–1038

    Article  ADS  Google Scholar 

  33. Xu FX, Chen W, Wang S, et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin Sci Bull, 2009, 54: 2991–2997

    Article  Google Scholar 

  34. Li C Z. Real applications of quantum communications in China. Chin Sci Bull, 2009, 54: 2976–2977

    Article  Google Scholar 

  35. Borras A, Plastino A R, Batle J, et al. Multiqubit systems: Highly entangled states and entanglement distribution. J Phys A, 2007, 40: 13407–13421

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Coffman V, Kundu J, Wootters WK. Distributed entanglement. Phys Rev A, 2000, 61: 052306

    Article  ADS  Google Scholar 

  37. Borras A, Majtey A P, Plastino A R, et al. Robustness of highly entangled multi-qubit states under decoherence. arXiv:quant-ph:0806.0779v2

  38. Choudhury S, Muralidharan S, Panigrahi P K. Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J Phys A, 2009, 42: 115303

    Article  MathSciNet  ADS  Google Scholar 

  39. Briegel H J, Raussendorf R. Persistent entanglement in arrays of interacting qubits. Phys Rev Lett, 2001, 86: 910–913

    Article  ADS  Google Scholar 

  40. Yang WX, Zhan Z M, Li J H. Efficient scheme for multipartite entanglement and quantum information processing with trapped ions. Phys Rev A, 2005, 72: 062108

    Article  ADS  Google Scholar 

  41. Yang W X, Zhan Z M, Li J H. Cluster states from quantum logic gates with trapped ions in thermal motion. Chin Phys Lett, 2006, 23: 120–123

    Article  ADS  Google Scholar 

  42. Zhang X L, Gao K L, Feng M. Preparation of cluster states and W states with superconducting quantum-interference-device qubits in cavity QED. Phys Rev A, 2006, 74: 024303

    Article  ADS  Google Scholar 

  43. Deng Z J, Feng M, Gao K L. Preparation of entangled states of four remote atomic qubits in decoherence-free subspace. Phys Rev A, 2007, 72: 024302

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZiYun Zhang or ZhanJun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, X., Liu, Y., Zhang, Z. et al. Perfect teleportation of an arbitrary three-qubit state with the highly entangled six-qubit genuine state. Sci. China Phys. Mech. Astron. 53, 2059–2063 (2010). https://doi.org/10.1007/s11433-010-4050-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4050-x

Keywords

Navigation