Skip to main content
Log in

Electronic structures of phosphorus-doped diamond films and impacts of their vacancies

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In order to better understand the bonding mechanisms of the phosphorus-doped diamond films and the influences of the phosphorus-doped concentration on the diamond lattice integrity and conductivity, we calculate the electronic structures of the phosphorus-doped diamond with different phosphorus concentrations and the density of states in the phosphorus—doped diamond films with a vacant lattice site by the first principle method. The calculation results show the phosphorus atom only affects the bonds of a few atoms in its vicinity, and the conductivity increases as the doped concentration increases. Also in the diamond lattice with a total number of 64 atoms and introducing a vacancy into the non-nearest neighbor lattice site of a phosphorus atom, we have found that both the injuries of the phosphorus-doped diamond films and the N-type electron conductivity of diamond films could be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michaud P A, Panizza M, Ouattara L, et al. Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. J Appli Electrochem, 2003, 33: 151–154

    Article  Google Scholar 

  2. Wu M F, Zhao G H, Li M F, et al. Applicability of boron-doped diamond electrode to the degradation of chloride-mediated and chloride-free wastewaters. J Hazard Mater, 2009, 163: 26–31

    Article  Google Scholar 

  3. Zhu X P, Ni J R, Peng L. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes. Water Res, 2009, 43(17): 4347–4355

    Article  Google Scholar 

  4. Chatzisymeon E, Nikolaos P, Xekoukoulotakis N P, et al. Boron-doped diamond anodic treatment of olive mill wastewaters: Statistical analysis, kinetic modeling and biodegradability. Water Res, 2009, 43(16): 3999–4009

    Article  Google Scholar 

  5. Altun Y, Dogan-Topal B, Uslu B, et al. Anodic behavior of sertindole and its voltammetric determination in pharmaceuticals and human serum using glassy carbon and boron-doped diamond electrodes. Electrochim Acta, 2009, 54: 1893–1903

    Article  Google Scholar 

  6. Nicolau E, Gonzalez I, Flynn M, et al. Bioelectrochemical degradation of urea at platinized boron doped diamond electrodes for bioregenerative systems. Adv Space Res, 2009, 44(8): 965–970

    Article  ADS  Google Scholar 

  7. Zhu J Z, Lu D R, Zhang G X. Electrochemical characteristics and applications of Boron-doped polycrystalline diamond film electrodes. J Shanghai Univ, 1998, 2(4): 311–315

    Article  Google Scholar 

  8. Provent C, Haenni W, Santoli E, et al. Boron-doped diamond electrodes and microelectrode-arrays for the measurement of sulfate and peroxodisulfate. Electrochim Acta, 2004, 49(22–23): 3737–3744

    Article  Google Scholar 

  9. Torz-Piotrowska R, Wrzyszczynski A, Paprocki K, et al. Application of N- and B-doped CVD diamond layers for cyclic voltammetry measurements. Opt Mater, 2009, 31(12): 1870–1872

    Article  ADS  Google Scholar 

  10. Kajihara S A, Antonelli A, Bernholc J, et al. Nitrogen and potential normal-type dopants in diamond. Phys Rev Lett, 1991, 66(15): 2010–2013

    Article  ADS  Google Scholar 

  11. Birrell J, Gerbi J E, Auciello O, et al. Bonding structure in nitrogen doped ultrananocrystalline diamond. J Appl Phys, 2003, 93(9): 5606–5612

    Article  ADS  Google Scholar 

  12. Okumura K, Mort J, Machonkin M. Lithium doping and photoemission of diamond thin films. Appl Phys Lett, 1990, 57(18): 1907–1909

    Article  ADS  Google Scholar 

  13. Lombardi E B, Mainwood A. A first principles study of lithium, sodium and aluminum in diamond. Diamond Relat Mater, 2008, 17(7–10): 1349–1352

    Article  Google Scholar 

  14. Geis M W, Twichell J C, Efremow N N, et al. Comparison of electric field emission from nitrogen-doped, type Ib diamond, and boron-doped diamond. Appl Phys Lett, 1996, 68(16): 2294–2296

    Article  ADS  Google Scholar 

  15. Okano K, Yamada T, Ishihara H, et al. Electron emission from nitrogen-doped pyramidal-shape diamond and its battery operation. Appl Phys Lett, 1997, 70(16): 2201–2203

    Article  ADS  Google Scholar 

  16. Sowers A T, Ward B L, English S L, et al. Field emission properties of nitrogen-doped diamond films. J Appl Phys, 1999, 86(7): 3973–3982

    Article  ADS  Google Scholar 

  17. Jackson K, Pederson M R, Harrison J G. Donor levels and impurity-atom relaxation in nitrogen- and phosphorus-doped diamond. Phys Rev B, 1990, 41(18): 12641–12648

    Article  ADS  Google Scholar 

  18. Okano K, Kiyota H, Iwasaki T, et al. p-n junction diode made of semiconducting diamond films. Appl Phys Lett, 1990, 58(8): 840–841

    Article  ADS  Google Scholar 

  19. Koizumi S, Kamo M, Sato Y, et al. Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films. Appl Phys Lett, 1997, 71(8): 1065–1067

    Article  ADS  Google Scholar 

  20. Suzuki M, Yoshida H, Sakuma N, et al. Electrical characterization of phosphorus-doped n-type homoepitaxial diamond layers by Schottky barrier diodes. Appl Phys Lett, 2004, 84(13): 2349–2351

    Article  ADS  Google Scholar 

  21. Koizumi S, Teraji T, Kanda H. Phosphorus-doped chemical vapor deposition of diamond. Diamond Relat Mater, 2000, 9(3–6): 935–940

    Article  Google Scholar 

  22. Koide Y, Koizumi S, Kanda H, et al. Admittance spectroscopy for phosphorus-doped n-type diamond epilayer. Appl Phys Lett, 2005, 86: 232105

    Article  ADS  Google Scholar 

  23. Segall M D, Lindan P J D, Probert M J J. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys-Condens Matter, 2002, 14: 2717–2744

    Article  ADS  Google Scholar 

  24. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B, 1990, 41(11): 7892–7895

    Article  ADS  Google Scholar 

  25. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18): 3865–3868

    Article  ADS  Google Scholar 

  26. Lombardi E B, Mainwood A, Osuch K. Interaction of hydrogen with boron, phosphorus, and sulfur in diamond. Phys Rev B, 2004, 70(20): 205201

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingYi Shao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Shao, Q. Electronic structures of phosphorus-doped diamond films and impacts of their vacancies. Sci. China Phys. Mech. Astron. 53, 1248–1254 (2010). https://doi.org/10.1007/s11433-010-4003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4003-4

Keywords

Navigation