Skip to main content
Log in

Implementation of the Fredkin gate with a three-qubit mixed-spin Heisenberg model

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We show that a local unitary (LU) equivalent Fredkin gate can be obtained from the free evolution of three mixed-spin qubits by virtue of numerical simulation with only one step. The spin-1 qubit acts as the control qubit, and two spin-1/2 qubits, which interact with the spin-1 qubit via the first neighbor spin interaction, respectively, play the role of target qubits. We also examine the imperfect Fredkin gate operation by considering the effects of nonidentical coupling constants, uniform and inhomogeneous magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman R P. Simulating physics with computers. Int J theor Phys, 1982, 21: 467–488

    Article  MathSciNet  Google Scholar 

  2. Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc Roy Soc Lond A, 1985, 400: 97–117

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Shor PW. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on the Foundation of Computer Science. CA, Los Alamitos: IEEE Computer Society Press, 1994. 124–134

    Chapter  Google Scholar 

  4. Grover L K. Quantum computers can search rapidly by using almost any transformation. Phys Rev Lett, 1998, 80: 4329–4332

    Article  ADS  Google Scholar 

  5. Cirac J I, Zoller P. Quantum computations with cold trapped ions. Phys Rev Lett, 1995, 74: 4091–4094

    Article  ADS  Google Scholar 

  6. Barenco A, Deutsch D, Ekert A. Conditional quantum dynamics and logic gates. Phys Rev Lett, 1995, 74: 4083–4086

    Article  ADS  Google Scholar 

  7. Sleator T, Weinfurter H. Realizable universal quantum logic gates. Phys Rev Lett, 1995, 74: 4087–4090

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Gershenfeld N A, Chuang I L. Bulk spin-resonance quantum computation. Science, 1997, 275: 350–356

    Article  MathSciNet  Google Scholar 

  9. Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409(6816): 46–52

    Article  ADS  Google Scholar 

  10. Loss D, DiVincenzo D P. Quantum computation with quantum dots. Phys Rev A, 1998, 57: 120–126

    Article  ADS  Google Scholar 

  11. Kane B E. A silicon-based nuclear spin quantum computer. Nature, 1998, 393(6681): 133–137

    Article  ADS  Google Scholar 

  12. Vrijen R, Yablonovitch E, Wang K, et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys Rev A, 2000, 62: 012306-1–10

    Article  ADS  Google Scholar 

  13. DiVincenzo D P, Bacon D, Kempe J, et al. Universal quantum computation with the exchange interaction. Nature, 2000, 408(6810): 339–342

    Article  ADS  Google Scholar 

  14. Benjamin S C. Simple pulses for universal quantum computation with a Heisenberg ABAB chain. Phys Rev A, 2001, 64: 054303-1–3

    ADS  Google Scholar 

  15. Benjamin S C. Quantum computing without local control of qubit-qubit interactions. Phys Rev Lett, 2001, 88: 017904-1–4

    Article  ADS  Google Scholar 

  16. Zhou X, Zhou Z W, Guo G C, et al. Quantum computation with untunable couplings. Phys Rev Lett, 2002, 89: 197903-1–4

    ADS  Google Scholar 

  17. Benjamin S C, Bose S. Quantum computing with an always-on Heisenberg interaction. Phys Rev Lett, 2003, 90: 247901-1–4

    Article  ADS  Google Scholar 

  18. Benjamin S C, Bose S. Quantum computing in arrays coupled by “always-on” interactions. Phys Rev A, 2004, 70: 032314-1–7

    ADS  Google Scholar 

  19. Wang F, Jia H H, Zhang H L, et al. Thermal entanglement in a mixed-spin Heisenberg XXZ model under a nonuniform external magnetic field. Sci China Ser G-Phys Mech Astron, 2009, 52(12): 1919–1924

    Article  ADS  Google Scholar 

  20. Ye M Y, Zhang Y S, Guo G. Quantum entanglement and quantum operation. Sci China Ser G-Phys Mechs Astron, 2008, 51(1): 14–21

    Article  MATH  ADS  Google Scholar 

  21. Ma X S, Zhang J Y, Cong H S, et al. Effect of Dzialoshinski-Moriya interaction on thermal entanglement of a mixed-spin chain. Sci China Ser G-Phys Mech Astron, 2008, 51(12): 1897–1904

    Article  ADS  Google Scholar 

  22. Hu M L, Tian D P. Effects of impurity on the entanglement of the three-qubit Heisenberg XXX spin chain. Sci China Ser G-Phys Mech Astron, 2007, 50(2): 208–214

    Article  MATH  Google Scholar 

  23. Wei D X, Yang X D, Luo J, et al. NMR experimental implementation of three-parties quantum superdense coding. Chin Sci Bull, 2004, 49(5): 423–426

    MATH  Google Scholar 

  24. Liu W Z, Zhang J F, Deng Z W, et al. Simulation of general three-body interactions in a nuclear magnetic resonance ensemble quantum computer. Sci China Ser G-Phys Mech Astron, 2008, 51(8): 1089–1096

    Article  MATH  ADS  Google Scholar 

  25. Liu WZ, Zhang J F, Cao Y, et al. Nuclear magnetic resonance implementation of universal quantum gate with constant Hamiltonian evolution. Appl Phys Lett, 2009, 94: 064103-1–3

    ADS  Google Scholar 

  26. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  27. Chuang I L, Yamamoto Y. Simple quantum computer. Phys Rev A, 1995, 52: 3489–3496

    Article  ADS  Google Scholar 

  28. Zou X B, Kim J, Lee H W. Generation of two-mode nonclassical motional states and a Fredkin gate operation in a two-dimensional ion trap. Phys Rev A, 2001, 63: 065801-1–3

    ADS  Google Scholar 

  29. Shao X Q, Chen L, Zhang S, et al. Swap gate and controlled swap gate based on a single resonant interaction with cavity quantum electrodynamics. Phys Scr, 2009, 79: 065004-1–6

    Article  ADS  Google Scholar 

  30. Shao X Q, Chen L, Zhang S. Three-qubit Fredkin gate based on cavity quantum electrodynamics. Chin Phys B, 2009, 18(8): 3258–3264

    Article  ADS  Google Scholar 

  31. Yung M H, Leung D W, Bose S. An exact effective two-qubit gate in a chain of three spins. Quantum Inf Comput, 2004, 4: 174–181

    MATH  MathSciNet  Google Scholar 

  32. López G V, Lara L. Numerical simulation of a controlled-controlled-not (CCN) quantum gate. J Phys B, 2006, 39: 3897–3904

    Article  ADS  Google Scholar 

  33. Wang X. Entanglement in the quantum Heisenberg XY model. Phys Rev A, 2001, 64: 012313-1–7

    ADS  Google Scholar 

  34. Sun Z, Wang X, Hu A, et al. Entanglement properties in (12, 1) mixed-spin Heisenberg systems. Physica A, 2006, 370: 483–500

    Article  ADS  Google Scholar 

  35. Yang G H, Zhou L. Entanglement properties of a two-qubit, mixed-spin, Heisenberg chain under a nonuniform magnetic field. Phys Scr, 2008, 78: 025703

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiuBo Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Q. Implementation of the Fredkin gate with a three-qubit mixed-spin Heisenberg model. Sci. China Phys. Mech. Astron. 53, 1276–1280 (2010). https://doi.org/10.1007/s11433-010-3209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-3209-9

Keywords

Navigation