Skip to main content
Log in

Delay induced transitions in an asymmetry bistable system and stochastic resonance

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The delay Fokker-Planck equation is given for an asymmetry bistable system with correlated Gaussian white noises. The small delay approximation based on the probability density approach is used and the approximate stationary probability density function is obtained. The phenomenon of delay induced transitions is found. When a weak periodic signal is added, the phenomenon of stochastic resonance is investigated. Expression of the signal-to-noise ratio (SNR) is obtained by using the two-state theory. It is shown that the time delay can suppress or promote the stochastic resonance phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sompolinsky H, Golomb D, Kleinfeld D. Cooperative dynamics in visual processing. Phys Rev A, 1991, 43: 6990–7011

    Article  ADS  Google Scholar 

  2. Niebur E, Schuster H G, and Kammen D M. Collective frequencies and metastability in networks of limit-cycle oscillators with time delay. Phys Rev Lett, 1991, 67: 2753–2756

    Article  ADS  Google Scholar 

  3. Goel N S, Maitra S C, and Montroll E W. On the Volterra and other nonlinear models of interacting populations. Rev Mod Phys, 1971, 43: 231–276

    Article  MathSciNet  ADS  Google Scholar 

  4. Cushing J M. Integrodifferential Equations and Delay Models in Population Dynamics. Berlin: Springer, 1977

    MATH  Google Scholar 

  5. Kim S, Park S H, Ryu C S. Multistability in Coupled Oscillator Systems with Time Delay. Phys Rev Lett, 1997, 79: 2911–2914

    Article  ADS  Google Scholar 

  6. Guillouzic S, Heureux I L, Longtin A. Small delay approximation of stochastic delay differential equations. Phys Rev E, 1999, 59: 3970–3982

    Article  ADS  Google Scholar 

  7. Guillouzic S, Heureux I L, Longtin A. Rate processes in a delayed, stochastically driven, and overdamped system. Phys Rev E, 2000, 61: 4906–4914

    Article  ADS  Google Scholar 

  8. Frank T D. Delay Fokker-Planck equations, perturbation theory, and data analysis for nonlinear stochastic systems with time delays. Phys Rev E, 2005, 71: 031106

    Article  ADS  Google Scholar 

  9. Frank T D. Delay Fokker-Planck equations, Novikovs theorem, and Boltzmann distributions as small delay approximations. Phys Rev E, 2005, 72: 011112

    Article  ADS  Google Scholar 

  10. Frank T D, Patanarapeelert K, Tang I M. Delay- and noise-induced transitions: a case study for a Hongler model with time delay. Phys Lett A, 2005, 339: 246–251

    Article  MATH  ADS  Google Scholar 

  11. Patanarapeelert K, Frank T D, Friedrich R, et al. On reducible nonlinear time-delayed stochastic systems: Fluctuation-dissipation relations, transitions to bistability, and secondary transitions to non-stationarity. J Phys A-Math Gen, 2005, 38: 10069–10083

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Benzi R, Sutera A, Vulpiani A. The Mechanism of Stochastic Resonance. J Phys A-Math Gen, 1981, 14: 453–457

    Article  MathSciNet  ADS  Google Scholar 

  13. McNamara B, Wiesenfeld K, Roy R. Observation of Stochastic Resonance in a Ring Laser. Phys Rev Lett, 1988, 60: 2626–2629

    Article  ADS  Google Scholar 

  14. McNamara B, Wiesenfeld K. Theory of stochastic resonance. Phys Rev A, 1989, 39: 4854–4869

    Article  ADS  Google Scholar 

  15. Dykman M I, Mannella R, McClintock P V E, et al. Comment on “Stochastic resonance in bistable systems”. Phys Rev Lett, 1990, 65: 2606–2606

    Article  ADS  Google Scholar 

  16. Hu G, Nicolis G, Nicolis C. Periodically forced Fokker-Planck equation and stochastic resonance. Phys Rev A, 1990, 42: 2030–2041

    Article  ADS  Google Scholar 

  17. Zhou T, Moss F, Jung P. Escape-time distributions of a periodically modulated bistable system with noise. Phys Rev A, 1990, 42: 3161–3169

    Article  ADS  Google Scholar 

  18. Shao R H, Chen Y. Stochastic resonance in time-delayed bistable systems driven by weak periodic signal. Physica A, 2009, 388: 977–983

    Article  ADS  Google Scholar 

  19. Jia Z L. Effects of time delay on transient behavior of a time-delayed metastable system subjected to cross-correlated noises. Physica A, 2008, 387: 6247–6251

    Article  ADS  Google Scholar 

  20. Wu D J, Cao L, Ke S Z. Bistable kinetic model driven by correlated noises: Steady-state analysis. Phys Rev E, 1994, 50: 2496–2502

    Article  ADS  Google Scholar 

  21. Jia Y, Li J R. Stochastic system with colored correlation between white noise and colored noise. Physica A, 1998, 252: 417–427

    Article  Google Scholar 

  22. Jia Y, Li J R. Transient properties of a bistable kinetic model with correlations between additive and multiplicative noises: Mean first-passage time. Phys Rev E, 1996, 53: 5764–5768

    Article  ADS  Google Scholar 

  23. Liang G Y, Cao L, Wu D J. Approximate Fokker-Planck equation of system driven by multiplicative colored noises with colored cross-correlation. Physica A, 2004, 335: 371–384

    Article  ADS  Google Scholar 

  24. Mei D C, Xie G Z, Cao L, Wu D J. Mean first-passage time of a bistable kinetic model driven by cross-correlated noises. Phys Rev E, 1999, 59: 3880–3883

    Article  ADS  Google Scholar 

  25. Wu D, Luo X Q, Zhu S Q. Stochastic resonance in a bistable system with time-delayed feedback and non-Gaussian noise. Physica A, 2007, 363: 202–212

    Google Scholar 

  26. Zhang H Q, Xu W, Xu Y. The study on a stochastic system with non-Gaussian noise and Gaussian colored noise. Physica A, 2009, 388: 781–788

    Article  ADS  Google Scholar 

  27. Bulsara A R, Inchiosa M E, Gammaitoni L. Spatiotemporal Stochastic Resonance in a 4 Model of Kink-Antikink Nucleation. Phys Rev Lett, 1996, 77: 2609–2612

    Article  Google Scholar 

  28. Inchiosa M E, Bulsara A R, Gammaitoni L. Higher-order resonant behavior in asymmetric nonlinear stochastic systems. Phys Rev E, 1997, 55: 4049–4056

    Article  ADS  Google Scholar 

  29. Gammaitoni L, Bulsara A R. Noise Activated Nonlinear Dynamic Sensors. Phys Rev Lett, 2002, 88: 230601

    Article  ADS  Google Scholar 

  30. Wio H S, Bouzat S. Stochastic resonance: the role of potential asymmetry and non Gaussian noises. Braz J Phys, 1999, 29: 136–143

    Article  Google Scholar 

  31. Li J H. Effect of asymmetry on stochastic resonance and stochastic resonance induced by multiplicative noise and by mean-field coupling. Phys Rev E, 2002, 66: 031104

    Article  ADS  Google Scholar 

  32. Jin Y F, Xu W, Xu M. Stochastic resonance in an asymmetric bistable system driven by correlated multiplicative and additive noise. Chaos Solitons Fractals, 2005, 26: 1183–1187

    Article  MATH  Google Scholar 

  33. Zhang H Q, Xu W, Xu Y. Stochastic time-delayed systems driven by correlated noises: Steady-state analysis. Physica A, 2009, 388: 3017–3023

    Article  ADS  Google Scholar 

  34. Gardiner C W. Handbook of Stochastic Methods. Berlin: Springer-Verlag, 1983

    MATH  Google Scholar 

  35. Risken H. The Fokker-Planck Equation. Berlin: Springer-Verlag, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuiQing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Xu, W., Xu, Y. et al. Delay induced transitions in an asymmetry bistable system and stochastic resonance. Sci. China Phys. Mech. Astron. 53, 745–750 (2010). https://doi.org/10.1007/s11433-010-0157-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-0157-3

Keywords

Navigation