Skip to main content
Log in

Light-induced unconventional Landau levels of ultracold fermions in a trilayer honeycomb lattice

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The spectrum of cold fermionic atoms is studied in a trilayer honeycomb optical lattice subjected to a perpendicular effective magnetic field, which is created with optical means. In the low energy approximation, the spectrum shows unconventional Landau levels, which are proportional to the 3/2 power of integer numbers. The zoro modes exist and the quasiparticles are chiral. It is also proposed to identify the unconventional Landau levels via probing the dynamic structure factor of the system with Bragg spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200

    Article  ADS  Google Scholar 

  2. Li G, Andrei E Y. Observation of Landau levels of Dirac fermions in graphite. Nat Phys, 2007, 3(9): 623–627

    Article  Google Scholar 

  3. Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201–204

    Article  ADS  Google Scholar 

  4. Zheng Y, Ando T. Hall conductivity of a two-dimensional graphite system. Phys Rev B, 2002, 65(24): 245420-1–11

    ADS  Google Scholar 

  5. Jackiw R, Pi S Y. Chiral gauge theory for graphene. Phys Rev Lett, 2007, 98(26): 266402-1–4

    Article  ADS  Google Scholar 

  6. Hou C Y, Chamon C, Mudry C. Electron fractionalization in two-dimensional graphenelike structures. Phys Rev Lett, 2007, 98(18): 186809-1–4

    Article  ADS  Google Scholar 

  7. McCann E, Fal’ko V. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys Rev Lett, 2006, 96(8): 086805-1–4

    Article  ADS  Google Scholar 

  8. McCann E, Abegel D S L, Fal’ko V. Electrons in bilayer graphene. Solid State Commun, 2007, 143(1–2): 110–115

    Article  ADS  Google Scholar 

  9. Nilsson J, Castro Netro A H, Peres N M R, et al. Electron-electron interactions and the phase diagram of a graphene bilayer. Phys Rev B, 2006, 73(21): 214418-1–10

    Article  ADS  Google Scholar 

  10. Novoselov K S, McCann E, Morozov S V, et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat Phys, 2006, 2(3): 177–180

    Article  Google Scholar 

  11. Guinea F, Castro Neto A H, Peres N M R. Electronic states and Landau levels in graphene stacks. Phys Rev B, 2006, 73(24): 245426-1–8

    Article  ADS  Google Scholar 

  12. Jaksch D, Bruder C, Cirac J I, et al. Cold bosonic atoms in optical lattices. Phys Rev Lett, 1998: 81(15): 3108–3111

    Article  ADS  Google Scholar 

  13. Greiner M, Esslinger T, Mandel O, et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature, 2002, 415(6867): 39–44

    Article  ADS  Google Scholar 

  14. Lewenstein M, Sanpera A, Ahufinger V, et al. Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond. Adv Phys, 2007, 56(1–2): 243–379

    Article  ADS  Google Scholar 

  15. Qi R, Yu X L, Li Z B, et al. Non-Abelian Josephson effect between two F=2 spinor Bose-Einstein condensates. Phys Rev Lett, 2009, 102(18): 185301-1–4

    ADS  Google Scholar 

  16. Ji A C, Liu W M, Song J L, et al. Dynamical creation of fractionalized vortices and vortex lattices. Phys Rev Lett, 2008, 101(1): 010402-1–4

    Article  ADS  Google Scholar 

  17. He P B, Sun Q, Li P, et al. Magnetic quantum phase transition of cold atoms in an optical lattice. Phys Rev A, 2007, 76(4): 043618-1–5

    ADS  Google Scholar 

  18. Zhao E, Paramekanti A. BCS-BEC crossover on the two-dimensional honeycomb lattice. Phys Rev Lett, 2006, 97(23): 230404-1–4

    Article  ADS  Google Scholar 

  19. Zhu S L, Wang B, Duan LM. Simulation and detection of Dirac fermions with cold atoms in an optical lattice. Phys Rev Lett, 2007, 98(26): 260402-1–4

    Article  ADS  Google Scholar 

  20. Wu C, Bergman D, Balents L, et al. Flat bands andWigner crystallization in the honeycomb optical lattice. Phys Rev Lett, 2007, 99(7): 070401-1–4

    ADS  Google Scholar 

  21. Hou J M. Energy bands and Landau levels of ultracold fermions in the bilayer honeycomb optical lattice. J Mod Opt, 2009, 56(10): 1182–1187

    Article  MATH  ADS  Google Scholar 

  22. Duan L M, Demler E, Lukin M D. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys Rev Lett, 2003, 91(9): 090402-1–4

    Article  ADS  Google Scholar 

  23. Grynberg G, Robilliard C. Cold atoms in dissipative optical lattices. Phys Rep, 2001, 355(5–6): 335–451

    Article  ADS  Google Scholar 

  24. Juzeliūnas G, Ruseckas J, Öhberg P, et al. Light-induced effective magnetic fields for ultracold atoms in planar geometries. Phys Rev A, 2006, 73(2): 025602-1–4

    ADS  Google Scholar 

  25. Stamper-Kurn D M, Chikkatur A P, Görlitz A, et al. Excitation of phonons in a Bose-Einstein condensate by light scattering. Phys Rev Lett, 1999, 83(15): 2876–2879

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JingMin Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, J. Light-induced unconventional Landau levels of ultracold fermions in a trilayer honeycomb lattice. Sci. China Phys. Mech. Astron. 53, 321–326 (2010). https://doi.org/10.1007/s11433-010-0075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-0075-4

Keywords

Navigation