Skip to main content
Log in

EIT waves and coronal magnetic field diagnostics

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Magnetic field in the solar lower atmosphere can be measured by the use of the Zeeman and Hanle effects. By contrast, the coronal magnetic field well above the solar surface, which directly controls various eruptive phenomena, can not be precisely measured with the traditional techniques. Several attempts are being made to probe the coronal magnetic field, such as force-free extrapolation based on the photospheric magnetograms, gyroresonance radio emissions, and coronal seismology based on MHD waves in the corona. Compared to the waves trapped in the localized coronal loops, EIT waves are the only global-scale wave phenomenon, and thus are the ideal tool for the coronal global seismology. In this paper, we review the observations and modelings of EIT waves, and illustrate how they can be applied to probe the global magnetic field in the corona.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sahal-Bréchot S. The Hanle effect applied to magnetic field diagnostics. Space Sci Rev, 1981, 29: 391–401

    Article  ADS  Google Scholar 

  2. White S M. Solar and Space Weather Radiophysics, Vol. 314. In: Gary D E, Keller C U, eds. Dordrecht: Academic Publisher, 2004. 89–113

    Google Scholar 

  3. Roberts B, Edwin P M, Benz A O. On coronal oscillations. Astrophys J, 1984, 279: 857–865

    Article  ADS  Google Scholar 

  4. Moreton G E, Ramsey H E. Recent observations of dynamical phenomena associated with solar flares. Publ Astron Soc Pac, 1960, 72: 357

    Article  ADS  Google Scholar 

  5. Uchida Y. Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Sol Phys, 1968, 4: 30–44

    Article  ADS  Google Scholar 

  6. Roberts B. Waves and oscillations in the corona. Sol Phys, 2000, 193: 139–152

    Article  ADS  Google Scholar 

  7. Thompson B J, Plunkett S P, Gurman J B, et al. SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys Res Lett, 1998, 25: 2465–2468

    Article  ADS  Google Scholar 

  8. Vršnak B, Warmuth A, Temmer M, et al. Multi-wavelength study of coronal waves associated with the CME-flare event of 3 November 2003. Astron Astrophys, 2006, 448: 739–752

    Article  ADS  Google Scholar 

  9. Thompson B J, Gurman J B, Neupert W M, et al. SOHO/EIT observations of the 1997 April 7 coronal transient: Possible evidence of coronal moreton waves. Astrophys J, 1999, 517: 151–154

    Article  ADS  Google Scholar 

  10. Chen P F. Initiation and propagation of CMEs. J Astrophys Astron, 2008, 29: 179–186

    Article  ADS  Google Scholar 

  11. Wills-Davey M J, Thompson B J. Observations of a propagating disturbance in TRACE. Sol Phys, 1999, 190: 467–483

    Article  ADS  Google Scholar 

  12. Chen P F, Fang C. EIT waves — A signature of global magnetic restructuring in CMEs. IAU Symp, 2005, 226: 55–64

    ADS  Google Scholar 

  13. Klassen A, Aurass H, Mann G, et al. Catalogue of the 1997 SOHO-EIT coronal transient waves and associated type II radio burst spectra. Astron Astrophys, 2000, 141: 357–369

    ADS  Google Scholar 

  14. Thompson B J, Myers D C. Catalog of coronal “EIT Wave” transients. Astrophys J Suppl Ser, 2009, 183: 225–243

    Article  ADS  Google Scholar 

  15. Long D M, Gallagher P T, McAteer R T J, et al. The kinematics of a globally propagating disturbance in the solar corona. Astrophys J, 2008, 680: L81–L84

    Article  ADS  Google Scholar 

  16. Wu S T, Zheng H, Wang S, et al. 3D numerical simulation of MHD waves observed by EIT. J Geophys Res, 2001, 106: 25089–25102

    Article  ADS  Google Scholar 

  17. Wang Y M. EIT waves and fast-mode propagation in the solar corona. Astrophys J, 2000, 543: L89–L92

    Article  ADS  Google Scholar 

  18. Grechnev V V, Uralov A M, Slemzin V A, et al. Absorption phenomena and a probable blast wave in the 13 July 2004 eruptive event. Sol Phys, 2008, 253: 263–290

    Article  ADS  Google Scholar 

  19. Veronig A M, Temmer M, Vršnak B. High-cadence observations of a global coronal Wave by STEREO EUVI. Astrophys J, 2008, 681: L113–L116

    Article  ADS  Google Scholar 

  20. Delannée C, Aulanier G. CME Associated with transequatorial loops and a bald patch flare. Sol Phys, 1999, 190: 107–129

    Article  ADS  Google Scholar 

  21. Chen P F, Wu S T, Shibata K, et al. Evidence of EIT and Moreton waves in numerical simulations. Astrophys J, 2002, 572: L99–L102

    Article  ADS  Google Scholar 

  22. Chen P F, Fang C, Shibata K. A full view of EIT waves. Astrophys J, 2005, 622: 1202–1210

    Article  ADS  Google Scholar 

  23. Harra L K, Sterling A C. Imaging and spectroscopic investigations of a solar coronal wave. Astrophys J, 2003, 587: 429–438

    Article  ADS  Google Scholar 

  24. Warmuth A, Mann G. A model of the Alfvén speed in the solar corona. Astron Astrophys, 2005, 435: 1123–1135

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PengFei Chen.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2006CB806302) and the National Natural Science Foundation of China (Grant Nos. 10933003 and 10403003)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P. EIT waves and coronal magnetic field diagnostics. Sci. China Ser. G-Phys. Mech. Astron. 52, 1785–1789 (2009). https://doi.org/10.1007/s11433-009-0240-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0240-9

Keywords

Navigation