Skip to main content
Log in

One-loop approximation of Møller scattering in generalized Krein-space quantization

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

It has been shown that the negative-norm states necessarily appear in a covariant quantization of the free minimally coupled scalar field in de Sitter spacetime. In this processes ultraviolet and infrared divergences have been automatically eliminated. A natural renormalization of the one-loop interacting quantum field in Minkowski spacetime (λφ 4) has been achieved through the consideration of the negative-norm states defined in Krein space. It has been shown that the combination of quantum field theory in Krein space together with consideration of quantum metric fluctuation, results in quantum field theory without any divergences. Pursuing this approach, we express Wick’s theorem and calculate Møller scattering in the one-loop approximation in generalized Krein space. The mathematical consequence of this method is the disappearance of the ultraviolet divergence in the one-loop approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Bievre S, Renaud J. The massless quantum field on the 1+1 dimensional de Sitter space. Phys Rev D, 1998, 57: 6230–6241[DOI]

    Article  MathSciNet  Google Scholar 

  2. Gazeau J P, Renaud J, Takook M V. Gupta-Bleuler quantization for minimally coupled scalar field in de Sitter space. Class Quant Grav, 2000, 17: 1415–1434[DOI]

    Article  MATH  MathSciNet  Google Scholar 

  3. Takook M V. Covariant two point function for minimally coupled scalar field in de Sitter space-time. Mod Phys Lett A, 2001, 16:1691–1698[DOI]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Rouhani S, Takook M V. A naturally renormalized quantum field theory. 2006, arXiv: gr-qc/0607027

  5. Dirac P A M. A theory of electrons and protons. Proc Roy Soc A, 1942, 180: 1–40[DOI]

    Article  ADS  MathSciNet  Google Scholar 

  6. Gupta S N. Theory of longitudinal photons in quantum electrodynamics. Proc Phys Soc A, 1950, 63: 681–691[DOI]

    Article  ADS  Google Scholar 

  7. Hawking S W, Hertog T. Living with ghosts. Phys Rev D, 2002, 65: 103515–103527[DOI]

    Article  ADS  MathSciNet  Google Scholar 

  8. Takook M V. Théorie quantique des champs pour des systèmes élémentaires “massifs” et de “masse nulle” sur l’espace-temps de de Sitter. Thèse de l’université Paris VI, 1997

  9. Antoniadis I, Iliopoulos J, Tomaras T N. One-loop effective action around de Sitter space. Nucl Phys B, 1996, 462: 437–452[DOI]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Garidi T, Gazeau J P, Takook M V. Massive spin-2 field in de Sitter space. J Math Phys, 2003, 44: 3838–3862[DOI]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Payandeh F, Mehrafarin M, Takook M V. Field quantization in Krein space. 13th International Symposium on Particles, Strings, and Cosmology (London, 2–7 July, 2007). AIP Conf Proc, 2007, 957: 249–252[DOI]

    ADS  Google Scholar 

  12. Takook M V. Covariant two-point function for linear gravity in de Sitter space. Proceedings of the 6th International Wigner Symposium (WIGSYM6), Istanbul, Turkey, 16–22 August, 1999. Istanbul: Bogazici University Press, 2002. arXiv: gr-qc0001052

    Google Scholar 

  13. Takook M V. A natural renormalization of the one-loop effective action for scalar field in curved space-time. Int J Mod Phys E, 2005, 14: 219–224[DOI]

    Article  ADS  Google Scholar 

  14. Rouhani S, Takook M V. Tree-level scattering amplitude in de Sitter space. Europhys Lett, 2004, 68: 15–20[DOI]

    Article  ADS  MathSciNet  Google Scholar 

  15. Khosravi H, Naseri M, Rouhani S, et al. Casimir effect in Krein space quantization. Phys Lett B, 2006, 640: 48–51[DOI]

    Article  ADS  MathSciNet  Google Scholar 

  16. Garidi T, Huguet E, Renaud J. Krein space quantization in curved and flat spacetimes. J Phys A, 2005, 38: 245–256[DOI]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Hofmann G. The Hilbert space structure condition for quantum field theories. Lett Math Phys, 1997, 42: 281–295[DOI]

    Article  MATH  MathSciNet  Google Scholar 

  18. Hofmann G. Quantum fields with indefinite metrics. Rep Math Phys, 1996, 38: 67–83[DOI]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Takook M V. Negative norm states in de sitter space and quantum field theory without renormalization procedure. Int J Mod Phys E, 2002, 11: 509–518[DOI]

    Article  ADS  Google Scholar 

  20. Deser S. General relativity and the divergence problem in quantum field theory. Rev Mod Phys, 1957, 29: 417–423[DOI]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Dewitt B S. Gravity: A natural regulator. Phys Rev Lett, 1964, 13: 114–118[DOI]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Ford H L. Quantum field theory in curved space-time. 1997, arXiv: gr-qc/9707062

  23. Greiner W, Reinhardt J. Field Quantization. Berlin: Springer-Verlag, 1996

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Payandeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payandeh, F., Mehrafarin, M. & Takook, M.V. One-loop approximation of Møller scattering in generalized Krein-space quantization. Sci. China Ser. G-Phys. Mech. Astron. 52, 212–217 (2009). https://doi.org/10.1007/s11433-009-0039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0039-8

Keywords

Navigation